• Title/Summary/Keyword: Resistance Factor

Search Result 2,207, Processing Time 0.027 seconds

Partial Safety Factor of Offshore Wind Turbine Pile Foundation in West-South Mainland Sea (서남해안 해상풍력단지 말뚝기초의 부분안전계수)

  • Yoon, Gil Lim;Kim, Sun Bin;Kwon, O Soon;Yoo, Moo Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1489-1504
    • /
    • 2014
  • This paper is aimed to suggest a site specific partial safety factor of offshore wind turbine (OWT) pile foundation design for the offshore wind turbine complex at a West-South mainland sea in Korea. International offshore wind design standards such as IEC, GL, DNV, API, ISO and EUROCODE were compared with each partial safety factor and resistance factor. Soil uncertainty analysis using a large number of soil data sampled was carried out, and their results were adapted to estimate partial safety factor of OWT pile foundation through reliability analyses. The representative partial safety factor has been estimated as 1.3. When a proposed partial factor is willing to use to other sites, it is recommended that further studies on code calibration are required to validate their accuracy using more site characterization data.

Rating of steel bridges considering fatigue and corrosion

  • Lalthlamuana, R.;Talukdar, S.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.5
    • /
    • pp.643-660
    • /
    • 2013
  • In the present work, the capacity ratings of steel truss bridges have been carried out incorporating dynamic effect of moving vehicles and its accumulating effect as fatigue. Further, corrosion in the steel members has been taken into account to examine the rating factor. Dynamic effect has been considered in the rating procedure making use of impact factors obtained from simulation studies as well as from codal guidelines. A steel truss bridge has been considered to illustrate the approach. Two levels of capacity ratings- the upper load level capacity rating (called operating rating) and the lower load level capacity rating (called inventory rating) were found out using Load and Resistance Factor Design (LRFD) method and a proposal has been made which incorporates fatigue in the rating formula. Random nature of corrosion on the steel member has been taken into account in the rating by considering reduced member strength. Partial safety factor for each truss member has been obtained from the fatigue reliability index considering random variables on the fatigue parameters, traffic growth rate and accumulated number of stress cycle using appropriate probability density function. The bridge has been modeled using Finite Element software. Regressions of rating factor versus vehicle gross weight have been obtained. Results show that rating factor decreases when the impact factor other than those in the codal provisions are considered. The consideration of fatigue and member corrosion gives a lower value of rating factor compared to those when both the effects are ignored. In addition to this, the study reveals that rating factor decreases when the vehicle gross weight is increased.

Dielectric and Electric Properties of Mutilayer Ceramic Capacitor with SL Temperature Characteristics (SL 온도특성을 가지는 적층 칩 세라믹 캐패시터용 유전체의 유전 및 전기적 특성)

  • Yoon, Jung-Rag;Lee, Sang-Won;Kim, Min-Ki;Lee, Kyoung-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.7
    • /
    • pp.645-651
    • /
    • 2008
  • To reduce noise in high frequency and distortion of signal, the composition of $(Ca_{0.7}Sr_{0.3})(Zr_{0.97}Ti_{0.03})O_3$ and $(Ba_{0.2}Ca_{0.4}Sr_{0.4})TiO_3$ was developed. The composition was not solid solution, but mixtures of various phases composed of Ca, Sr, Zr, Ti and Ba oxides. The dielectric constant increased, the quality factor and the insulation resistance decreased with $(Ba_{0.2}Ca_{0.4}Sr_{0.4})TiO_3$ content. The composition of $0.4(Ba_{0.2}Ca_{0.4}Sr_{0.4})TiO_3$ satisfied the electric characteristics and the temperature coefficient of dielectric constant (TCC). In addition, the glass frit and $MnO_2$ also affected the electric characteristics. From the result of the best fit simulation, $MnO_2$ 0.3 mol%, the glass frit 0.6 wt% showed the insulation resistance $906{\Omega}{\cdot}F$, the quality factor 821, and the dielectric constant 92. With the selected composition, MLCC capacitors sized $4.5{\times}3.2{\times}2.5mm$ were manufactured with 105 layered of the dielectric thickness $16{\mu}m$ using Ni inner electrode, They represented the capacitance $98{\sim}102$ nF, the quality factor 1,200 and the insulation resistance $1,500{\Omega}{\cdot}F$. Also, they had high break-down voltage with $107{\sim}115V/{\mu}m$, and satisfied the SL TCC characteristics.

Analysis of Effective Soil Thermal Conductivities and Borehole Thermal Resistances with a Line Source Method (선형열원법에 의한 지중유효열전도도와 보어홀 전열저항 해석)

  • Lee, Se-Kyoun;Woo, Joung-Son;Ro, Jeong-Geun
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.4
    • /
    • pp.71-78
    • /
    • 2010
  • Investigation of the effective soil thermal conductivity(k) is the first step in designing the ground loop heat exchanger(borehole) of a geothermal heat pump system. The line source method is required by New and Renewable Energy Center of Korea Energy Management Corporation in analyzing data obtained from thermal response tests. Another important factor in designing the ground loop heat exchanger is the borehole thermal resistance($R_b$). There are two methods to evaluate $R_b$ : one is to use a line source method, and the other is to use a shape factor of the borehole. In this study, we demonstrated that the line source method produces better results than the shape factor method in evaluating $R_b$. This is because the borehole thermal resistance evaluated with the line source method characteristically reduces the temperature differences between an actual and a theoretical thermal behaviors of the borehole. Evaluation of $R_b$ requires soil volumetric heat capacity. However, the effect of the soil volumetric heat capacity on the borehole thermal resistance is very small. Therefore, it is possible to use a generally accepted average value of soil volumetric heat capacity($=2MJ/m^3{\cdot}K$) in the analysis. In this work, it is also shown that an acceptable range of the initial ignoring time should be in the range of 8~16hrs. Thus, a mean value of 12 hrs is recommended.

Hypoxia Induced Multidrug Resistance of Laryngeal Cancer Cells via Hypoxia-inducible Factor-1α

  • Li, Da-Wei;Dong, Pin;Wang, Fei;Chen, Xin-Wei;Xu, Cheng-Zhi;Zhou, Liang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.8
    • /
    • pp.4853-4858
    • /
    • 2013
  • Objectives: To investigate whether hypoxia has an effect on regulation of multidrug resistance (MDR) to chemotherapeutic drugs in laryngeal carcinoma cells and explore the role of hypoxia-inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$). Methods: Laryngeal cancer cells were cultured under normoxic and hypoxic conditions. The sensitivity of the cells to multiple drugs and levels of apoptosis induced by paclitaxel were determined by MTT assay and annexin-V/propidium iodide staining analysis, respectively. HIF-$1{\alpha}$ expression was blocked by RNA interference. The expression of HIF-$1{\alpha}$ gene was detected by real-time quantitative RT-PCR and Western blotting. The value of fluorescence intensity of intracellular adriamycin accumulation and retention in cells was evaluated by flow cytometry. Results: The sensitivity to multiple chemotherapy agents and induction of apoptosis by paclitaxel could be reduced by hypoxia (P<0.05). A the same time, the adriamycin releasing index of cells was increased (P<0.05). However, resistance acquisition subject to hypoxia in vitro was suppressed by down-regulating HIF-$1{\alpha}$ expression. Conclusion: HIF-$1{\alpha}$ could be considered as a key regulator for mediating hypoxia-induced MDR in laryngeal cancer cells via inhibition of drug-induced apoptosis and decrease in intracellular drug accumulation.

Fabrication and Performance Evaluation of Thin Polysilicon Strain Gauge Bonded to Metal Cantilever Beam (금속 외팔보에 접착된 박막 실리콘 스트레인 게이지의 제작 및 성능 평가)

  • Kim, Yong-Dae;Kim, Young-Deok;Lee, Chul-Sub;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.391-398
    • /
    • 2010
  • In this paper, we propose a sensor design by using a polysilicon strain gauge bonded to a metal diaphragm. The fabrication process of the thin polysilicon strain gauges having thicknesses of $50\;{\mu}m$ was established using conventional MEMS technologies; further, the technique of glass frit bonding of the polysilicon strain gauge to the stainless steel diaphragm was established. Performance of the polysilicon strain gauge bonded to the metal cantilever beam was evaluated. The gauge factor, temperature coefficient of resistance (TCR), nonlinearity, and hysteresis of the polysilicon strain gauge were measured. The results demonstrate that the resistance increases linearly with tensile stress, while it decreases with compressive stress. The value of the gauge factor, which represents the sensitivity of strain gauges, is 34.0; this value is about 7.15 times higher than the gauge factor of a metal-foil strain gauge. The resistance of the polysilicon strain gauge decreases linearly with an increase in the temperature, and TCR is $-328\;ppm/^{\circ}C$. Further, nonlinearity and hysteresis are 0.21 % FS and 0.17 % FS, respectively.

Nonlinear response of the pile group foundation for lateral loads using pushover analysis

  • Zhang, Yongliang;Chen, Xingchong;Zhang, Xiyin;Ding, Mingbo;Wang, Yi;Liu, Zhengnan
    • Earthquakes and Structures
    • /
    • v.19 no.4
    • /
    • pp.273-286
    • /
    • 2020
  • The pile group foundation is widely used for gravity pier of high-speed railway bridges in China. If a moderate or strong earthquake occurs, the pile-surrounding soil will exhibit obvious nonlinearity and significant pile group effect. In this study, an improved pushover analysis model for the pile group foundation with consideration of pile group effect is presented and validated by the quasi-static test. The improved model uses simplified springs to simulate the soil lateral resistance, side friction and tip resistance. PM (axial load-bending moment) plastic hinge model is introduced to simulate the impact of the axial force changing of pile group on their elastic-plastic characteristics. The pile group effect is considered in stress-stain relations of the lateral soil resistance with a reduction factor. The influence factors on nonlinear characteristics and plastic hinge distribution of the pile group foundation are discussed, including the pier height, longitudinal reinforcement ratio and stirrup ratio of the pile, and soil mechanical parameters. Furthermore, the displacement ductility factor, resistance increase factor and yielding stiffness ratio are provided to evaluate the seismic performance of soil-pile system. A case study for the pile group foundation of a railway simply supported beam bridge with a 32 m-span is conducted by numerical analysis. It is shown that the ultimate lateral force of pile group is not determined by the yielding force of the single one in these piles. Therefore, the pile group effect is essential for the seismic performance evaluation of the railway bridge with pile group foundation.

A Study on the Slope Stability Analysis by Shearing Reinforcement of Vegetation Roots -Focused on the Pinus Koraiensis Roots- (식생뿌리의 전단강도 보강에 의한 사면안전율 해석 -잣나무 뿌리를 중심으로-)

  • 조주형;이종성
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.5
    • /
    • pp.80-93
    • /
    • 2000
  • This study measured the shearing resistance of the roots of the Pinus Koraiensis by the tensile strength gained through their individual tensile test for the Root Reinforcement Model. On the basis of the shearing resistance value calculated through such a process the factor of safety(Fs) was comparatively presented by using the simplified Janbu Method in PCSTABL5M, the slop-analyzing software which had been developed in Purdue University of the U.S.A according to the shape of a slope and the type of soil. The results to have measured a stress and the factor of safety(Fs) by experiment are as follows. 1) The mean root diameter of the Pinus Koraiensis used for this experiment was 2.483mm and the mean tensile stress was calculated as 422.846(kgf/$\textrm{cm}^2$). In the strain ratio of material and the elastic modulus was measured 7.8%, 9,291.92(kgf/$\textrm{cm}^2$). 2) The shearing strength including the resistance of soil and root is expressed as Rt=C+Cr+$\sigma$.tan . ΔCr(kg/$\textrm{cm}^2$) of the shearing resistance calculated by estimating the areal ratio of roots at 10 is 0.253(kgf/$\textrm{cm}^2$). 3) As the result of making an analysis of the natural slope stability by the soil parameter, the factor of safety(Fs) was calculated at 1.795 in CL, and the stability analysis of the root reinforcement slope, Fs was calculated at 1.952. However, since a precise analysis of the controlled factors of the slope analyses are demanded for more accurate dynamic analyses, the future demands a study on this.

  • PDF

Characteristics of the Bioreactors of Hydrogen-producing Immobilized Cells (II) -Overall Effectiveness Factor in Continuous Reactors- (수소생산 고정화 생물 반응기의 특성(II) -연속 반응기에서의 총괄 효율인자 -)

  • 이명재;선용호;한정우;조영일
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.6
    • /
    • pp.510-516
    • /
    • 1988
  • The effects of input substrate concentration and dilution rate on mass transfer resistance in the operation of immobilized cell reactors were investigated using Rhodospirillum rubrum KS-301 immobilized by Ca alginate as reactor element and glucose as growth-limiting substrate. The kinetic parameters were obtained to estimate effectiveness factors. In the packed-bed reactor, internal mass transfer resistance was predominating although external resistance could not be neglected. The overall effectiveness factor was decreased with increase of dilution rate. In the continuous stirred-tank reactor, external resistance was nearly neglected and the overall effectiveness factor was not affected by dilution rate. In this experiment the overall effectiveness factors in PBR and CSTR were estimated to be 0.70 and 0.71 at D$_{i}$ = 0.2/h, R = 0.15 cm, and S$_{i}$ : 1.0g/L, respectively.

  • PDF

Non-Contact Sensing Method using PT Symmetric Circuit with Cross-Coupled NDR Circuits (크로스-결합구조의 부성 미분 저항 회로를 이용한 페리티-시간 대칭 구조의 비접촉 센서 구동 회로에 대한 연구)

  • Hong, Jong-Kyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.10-16
    • /
    • 2021
  • This paper proposes a model that considers the parity-time symmetric structure as a state detection circuit for sensor applications using a stretchable inductor. In particular, to obtain a more practical computer simulation result, the stretchable inductor model was applied to this study model by referring to previously reported experimental results. The resistance component and phase component were controlled through the negative differential resistance circuit used in this study. In addition, the imbalance of the circuit caused by a change in the characteristics of the stretchable inductor could be compensated for using a negative differential resistance circuit. In particular, an analysis of the frequency characteristics of the sensor driving circuit of the parity-time symmetric structure proposed in this study confirmed that the Q-factor could be increased up to 20 times compared to the conventional resonant circuit.