• Title/Summary/Keyword: Resist loss performance

Search Result 14, Processing Time 0.018 seconds

Modern Paper Quality Control

  • Komppa, Olavi
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.32 no.5
    • /
    • pp.72-79
    • /
    • 2000
  • On the other hand, the fiber orientation at the surface and middle layer of the sheet controls the bending stiffness of paperboard. Therefore, a reliable measurement of paper surface fiber orientation gives us a magnificent tool to investigate and predict paper curling and cockling tendency, and provides the necessary information to fine-tune the manufacturing process for optimum quality. Many papers, especially heavily calendered and coated grades, do resist liquid and gas penetration very much, being beyond the measurement range of the traditional instruments or resulting inconveniently long measuring time per sample. The increased surface hardness and use of filler minerals and mechanical pulp make a reliable, non-leaking sample contact to the measurement head a challenge of its own. Paper surface coating causes, as expected, a layer which has completely different permeability characteristics compared to the other layers of the sheet. The latest developments in sensor technologies have made it possible to reliably measure gas flow n well controlled conditions, allowing us to investigate the gas penetration of open structures, such as cigarette paper, tissue or sack paper, and in the low permeability range analyze even fully greaseproof papers, silicon papers, heavily coated papers and boards or even detect defects in barrier coatings! Even nitrogen or helium may be used as the gas, giving us completely new possibilities to rank the products or to find correlation to critical process or converting parameters. All the modern paper machines include many on-line measuring instruments which are used to give the necessary information for automatic process control systems. Hence, the reliability of this information obtained from different sensors is vital for good optimizing and process stability. If any of these on-line sensors do not operate perfectly as planned (having even small measurement error or malfunction), the process control will set the machine to operate away from the optimum, resulting loss of profit or eventual problems in quality or runnability. To assure optimum operation of the paper machines, a novel quality assurance policy for the on-line measurements has been developed, including control procedures utilizing traceable, accredited standards for the best reliability and performance.

  • PDF

Clinical assessment and grading of back pain in horses

  • Mayaki, Abubakar Musa;Razak, Intan Shameha Abdul;Adzahan, Noraniza Mohd;Mazlan, Mazlina;Rasedee, Abdullah
    • Journal of Veterinary Science
    • /
    • v.21 no.6
    • /
    • pp.82.1-82.10
    • /
    • 2020
  • Background: The clinical presentation of horses with back pain (BP) vary considerably with most horse's willingness to take part in athletic or riding purpose becoming impossible. However, there are some clinical features that are directly responsible for the loss or failure of performance. Objectives: To investigate the clinical features of the thoracolumbar region associated with BP in horses and to use some of the clinical features to classify equine BP. Methods: Twenty-four horses comprised of 14 with BP and 10 apparently healthy horses were assessed for clinical abnormality that best differentiate BP from normal horses. The horses were then graded (0-5) using the degree of pain response, muscular hypertonicity, thoracolumbar joint stiffness and overall physical dysfunction of the horse. Results: The common clinical features that significantly differentiate horses with BP from non-BP were longissimus dorsi spasm at palpation (78.6%), paravertebral muscle stiffness (64.3%), resist lateral bending (64.3%), and poor hindlimb impulsion (85.7%). There were significantly (p < 0.05) higher scores for pain response to palpation, muscular hypertonicity, thoracolumbar joint stiffness and physical dysfunction among horses with BP in relation to non-BP. A significant relationship exists between all the graded abnormalities. Based on the cumulative score, horses with BP were categorized into mild, mild-moderate, moderate and severe cases. Conclusions: BP in horse can be differentiated by severity of pain response to back palpation, back muscle hypertonicity, thoracolumbar joint stiffness, physical dysfunctions and their cumulative grading score is useful in the assessment and categorization of BP in horses.

Development of Analytical Model to Predict the Inelastic Moment Capacity of Reinforced Concrete and Masonry Shear Wall (전단벽 구조물의 모멘트 저항능력에 관한 비탄성 해석모델개발)

  • 홍원기;이호범;변근주
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.4
    • /
    • pp.123-134
    • /
    • 1993
  • A rapid progress has been made over last decade in the state-of-the-art earthquake structura1 engineering towards a better understanding of both the earthqauke ground motion and structural response. These efforts seek to ensure that there will be no serious injury or loss of life in the event of earthquake, and that structures can be built at minimum cost. The design of structures in general, concrete structures in particular, to resist strong ground input motions is not a simple matter, and analytical models for such structures must be developed from a design perspective that accounts for the complexities of the structural responses. The primary obj ective of earthquake structural engineering research is to ensure the safety of structures by understanding and improving a design methodology. Ideally, this would require the development of an analytical model related to a design methodology that ensures a ductile performance. For the accurate assessment of the adequacy of analytically developed model, experiments conducted to study the inplane inelastic cyclic behavior of structures should verify the analytical approach. The fundamental goal of this paper is to present and demonstrate experimentally verified analytical methods that provide the adequate degree of safety and confidience in the behavior of reinforced concrete structural components. This study further attempts to extend the developed modeling techruque for use by practicing structural engineers for both the analysis and design.Plication of the relaxed diaphragm through left thoracotomy was done and result was excellent as seen on Fig. 5. Cause of eventration of the left hemidiaphragm was due to paralysis of the left phrenic nerve which was tested during thoracotomy.

Modern Paper Quality Control

  • Olavi Komppa
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2000.06a
    • /
    • pp.16-23
    • /
    • 2000
  • The increasing functional needs of top-quality printing papers and packaging paperboards, and especially the rapid developments in electronic printing processes and various computer printers during past few years, set new targets and requirements for modern paper quality. Most of these paper grades of today have relatively high filler content, are moderately or heavily calendered , and have many coating layers for the best appearance and performance. In practice, this means that many of the traditional quality assurance methods, mostly designed to measure papers made of pure. native pulp only, can not reliably (or at all) be used to analyze or rank the quality of modern papers. Hence, introduction of new measurement techniques is necessary to assure and further develop the paper quality today and in the future. Paper formation , i.e. small scale (millimeter scale) variation of basis weight, is the most important quality parameter of paper-making due to its influence on practically all the other quality properties of paper. The ideal paper would be completely uniform so that the basis weight of each small point (area) measured would be the same. In practice, of course, this is not possible because there always exists relatively large local variations in paper. However, these small scale basis weight variations are the major reason for many other quality problems, including calender blacking uneven coating result, uneven printing result, etc. The traditionally used visual inspection or optical measurement of the paper does not give us a reliable understanding of the material variations in the paper because in modern paper making process the optical behavior of paper is strongly affected by using e.g. fillers, dye or coating colors. Futhermore, the opacity (optical density) of the paper is changed at different process stages like wet pressing and calendering. The greatest advantage of using beta transmission method to measure paper formation is that it can be very reliably calibrated to measure true basis weight variation of all kinds of paper and board, independently on sample basis weight or paper grade. This gives us the possibility to measure, compare and judge papers made of different raw materials, different color, or even to measure heavily calendered, coated or printed papers. Scientific research of paper physics has shown that the orientation of the top layer (paper surface) fibers of the sheet paly the key role in paper curling and cockling , causing the typical practical problems (paper jam) with modern fax and copy machines, electronic printing , etc. On the other hand, the fiber orientation at the surface and middle layer of the sheet controls the bending stiffness of paperboard . Therefore, a reliable measurement of paper surface fiber orientation gives us a magnificent tool to investigate and predict paper curling and coclking tendency, and provides the necessary information to finetune, the manufacturing process for optimum quality. many papers, especially heavily calendered and coated grades, do resist liquid and gas penetration very much, bing beyond the measurement range of the traditional instruments or resulting invonveniently long measuring time per sample . The increased surface hardness and use of filler minerals and mechanical pulp make a reliable, nonleaking sample contact to the measurement head a challenge of its own. Paper surface coating causes, as expected, a layer which has completely different permeability characteristics compared to the other layer of the sheet. The latest developments in sensor technologies have made it possible to reliably measure gas flow in well controlled conditions, allowing us to investigate the gas penetration of open structures, such as cigarette paper, tissue or sack paper, and in the low permeability range analyze even fully greaseproof papers, silicon papers, heavily coated papers and boards or even detect defects in barrier coatings ! Even nitrogen or helium may be used as the gas, giving us completely new possibilities to rank the products or to find correlation to critical process or converting parameters. All the modern paper machines include many on-line measuring instruments which are used to give the necessary information for automatic process control systems. hence, the reliability of this information obtained from different sensors is vital for good optimizing and process stability. If any of these on-line sensors do not operate perfectly ass planned (having even small measurement error or malfunction ), the process control will set the machine to operate away from the optimum , resulting loss of profit or eventual problems in quality or runnability. To assure optimum operation of the paper machines, a novel quality assurance policy for the on-line measurements has been developed, including control procedures utilizing traceable, accredited standards for the best reliability and performance.