• Title/Summary/Keyword: Resin of Plastics

Search Result 102, Processing Time 0.033 seconds

Mechanical Properties of Radiation-Curing Vinyl Ester Resin (방사선 경화 비닐에스터 수지의 기계적 특성 연구)

  • Shin, Bum-Sik;Jeun, Joon-Pyo;Kim, Hyun Bin;Kang, Phil-Hyun
    • Journal of Radiation Industry
    • /
    • v.4 no.1
    • /
    • pp.19-23
    • /
    • 2010
  • Vinyl ester (VE) resins, introduced in the late 1960s, have made large strides in reinforced plastics applications as adhesive and matrix materials on their appropriate mechanical performance characteristics in the glassy state. Generally, VE resins are a group of dimethacrylate resins based on bisphenol A type epoxy resin. They exhibit easy handling properties as well as good resistance to most chemical agents due to their mechanical and thermal properties. In this study, the effects of curing methods of vinyl ester resins on gel contents, flexural strength and dynamic mechanical properties were investigated. Thermal curing (room temperature, $80^{\circ}C$) and electron beam curing were used to crosslink a VE resin/styrene complex (65/35 wt%) with methyl ethyl ketone peroxide (MEKPO) as a catalyst and an 8 wt% cobalt naphthenate in styrene solution as a accelerator. For the samples, gel contents as well as flexural strength and dynamic mechanical properties were characterized and compared by soxhlet apparatus, universal testing machine (UTM) and dynamic mechanical analysis (DMA). As a result, the electron-cured VE resin was confirmed as a better condition than those for gel contents, flexural strength and dynamic mechanical properties, respectively.

Status and Future Prospects for Plastics Recycling (폐플라스틱 리싸이클링의 현주소 및 향후 방향)

  • Cho, Young Ju;Cho, Bong-Gyoo
    • Resources Recycling
    • /
    • v.29 no.4
    • /
    • pp.31-44
    • /
    • 2020
  • Recently, plastic recycling has emerged as a social issue, and its importance is increasing. Therefore, this article reviewed the current status and the future directions of domestic plastic recycling. Plastic recycling is major economic and social problems not only in South Korea but also worldwide and is being treated as an important factor for protecting the environment and for sustainability in the next generation. In particular, China, which has been dealing with a large amount of plastic waste generated around the world, has banned importing plastic waste, therefore, other countries have faced the problem of recycling plastics in their countries. In South Korea, the landfill and incineration of the waste are becoming more difficult by the Framework Act on Resources Circulation, therefore, the recycling and reuse of plastics are a very important.

Bisphenol A-induced overall immune downregulation in mice

  • Byun, Jung-A;Pyo, Myoung-Yun
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.118.2-119
    • /
    • 2003
  • This study was undertaken to assess overall effects of bisphenol A, a monomer widely used in manufacturing polycarbonate plastics or epoxy resin, exposure on immune system of mice. For in vitro evaluation, serial concentration of SPA was added into culture of various immune cells from normal female ICR mice, and for in vivo or ex vivo assessment, mice were orally exposed to BPA dissolved in olive oil as doses of 500, 1000, 2000 mg/g b.w. for acute expose or 100, 500, 1000 mg/kg/day b.w. 5days a week for subacute exposure. (omitted)

  • PDF

Improvement of Surface Quality and Development of Composite Wheel for Passenger Cars Manufactured by RTM (RTM공법을 이용한 승용차용 복합재료 휠의 표면정도 향상 및 개발)

  • 김포진;이대길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.54-57
    • /
    • 2003
  • Since passenger cars require five wheels including a spare, the weight reduction of wheels without sacrificing performance is important. Recently, the structured components of cars made of steel are replaced by composites. plastics and other nonmetallic materials such as aluminum and magnesium for weight reduction. From these new tried materials are most promising due to their high specific stiffness and specific strength. The composites manufactured by resin transfer molding (RTM) process has not only low cost for the manufacturing but also reduces the lead time and development because the molds for RTM is easy to manufacture. In this work, composite wheels for passenger cars were designed and manufactured by RTM process. Since surface quality of wheels is important for passenger cars, the optimal stacking sequence for composite wheels was selected considering surface quality and mechanical properties. Also, the manufacturing method for the composite mold was depicted.

  • PDF

Changes on the Fine Structure of PBT Sheets with Various Drawing Methods (PBT시트의 연신 방법에 따른 미세구조 변화)

  • Lee, Sun-Hee;Cho, Hyun-Hok;Kazuo Nakayama
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.197-198
    • /
    • 2003
  • Poly(butylene terephthalate)(P5T) has long history as an engineering thermoplastic. PBT was first introduced commercially to the market place as an injection molding resin about 1969 by Celanese Plastics in the U.S.A. It is still widely used as a molding resin. Processing or forming methods for solid-phase deformation, such as stretching, hydrostatic extrusion. roller stretching, rolling, and so on can improve the mechanical properties effectively. (omitted)

  • PDF

Effects on the Tensile Strength and Discharge Volume of the White Biodegradable Plastic film added Compatibilizer (상용화제 첨가가 화이트 바이오 생분해 플라스틱 필름의 인장강도와 토출 량과 비중에 미치는 영향)

  • Han, Jung-gu;Park, Seung Joon;Li, Fanzhu;Park, Hyung Woo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.3
    • /
    • pp.169-174
    • /
    • 2021
  • Today, plastic waste has become a critical social issue due to the increasing of plastic consumption. Korean annual per capita plastic consumption was 132 kg, the most plastic consuming country in the world. Internationally, Carbon Neutral Agreement is underway due to global warming, consumers' interest and needs for biomass-based plastics has also been increased. In this study, film was produced by adding composite use additives to the biomass-based plastics according to concentration, and the resulting changes in discharge volume, melt index, and tensile strength were investigated. Melt index (MI) was significantly higher in PLA and PBAT than in petroleum-based resin LLDPE and LDPE. Also, among the same resin or in the same treatment group, MI has been increased when the heating temperature is increased. The discharge volume and gravity of the BDP-2 to which 4% compatibilizer was added were found to be higher among all treatments, while the tensile strength of MD and TD was also higher. BDP-2 was suitable to the film producing methods for biodegradable film production.

Periodic-Cell Simulations for the Microscopic Damage and Strength Properties of Discontinuous Carbon Fiber-Reinforced Plastic Composites

  • Nishikawa, M.;Okabe, T.;Takeda, N.
    • Advanced Composite Materials
    • /
    • v.18 no.1
    • /
    • pp.77-93
    • /
    • 2009
  • This paper investigated the damage transition mechanism between the fiber-breaking mode and the fiber-avoiding crack mode when the fiber-length is reduced in the unidirectional discontinuous carbon fiber-reinforced-plastics (CFRP) composites. The critical fiber-length for the transition is a key parameter for the manufacturing of flexible and high-strength CFRP composites with thermoset resin, because below this limit, we cannot take full advantage of the superior strength properties of fibers. For this discussion, we presented a numerical model for the microscopic damage and fracture of unidirectional discontinuous fiber-reinforced plastics. The model addressed the microscopic damage generated in these composites; the matrix crack with continuum damage mechanics model and the fiber breakage with the Weibull model for fiber strengths. With this numerical model, the damage transition behavior was discussed when the fiber length was varied. The comparison revealed that the length of discontinuous fibers in composites influences the formation and growth of the cluster of fiber-end damage, which causes the damage mode transition. Since the composite strength is significantly reduced below the critical fiber-length for the transition to fiber-avoiding crack mode, we should understand the damage mode transition appropriately with the analysis on the cluster growth of fiber-end damage.

A Study on the Friction and Wear Characteristics of Carbon Fiber Reinforced Plastics by Surface Modification (표면개질에 따른 탄소섬유복합재의 마찰마모 특성에 관한 연구)

  • O, Seong-Mo;Lee, Bong-Gu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.122-128
    • /
    • 2001
  • The objective of the present study was to investigate the characteristics of the friction and wear according to the amount of ion-irradiation for the carbon fiber reinforced plastic(CFRP). Unidirectional carbon fiber reinforced composites were fabricated with epoxy resin as a matrix and carbon fiber as a reinforcement, and its surface was modified by the ion-assisted reaction. When the amount of ion-irradiation was $1{\times}10^{16}$ ions/$cm^2$, the friction coefficients of composites were about 0.1 and the wear mode was stable, whereas, the friction coefficient of non-treatment composites were about 0.16 and the wear mode was very unstable. But if the amount of ion-irradiation was $5{\times}10^{16}$ ions/$cm^2$, the friction coefficients were higher rather than that of $1{\times}10^{16}$ ions/$cm^2$. Consequently, the amount of ion-irradiation was not in proportion to the friction coefficients, and it was conformed that the optimal conditions would exist between broth of them.

  • PDF

A Study on Stress Corrosion Cracking of Fiber Reinforced Composite by Slow Strain Rate Test (저변형률시험법에 의한 섬유강화 복합재료의 응력부식균열에 관한 연구)

  • Lim, Jae-Gyu;Choi, Tae-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3433-3440
    • /
    • 1996
  • This paper was investigation of the stres corrosion cracking(SCC) mechanism and the properties of corrosion fracture surface of glass fiber reinforced plastics(GFRP) produced by hand lay up(HLU) method in synthetic sea water. Test material is GFRP, that was used vinylester type epoxy acrylate resin and an unsaturated polyester as the matrix and the chopped strand mat(CSM) type E-glss fiber as the reinforcement. The slow strain rate test(SSRT) was performed on dry, wet and saturated wet specimens in sea water. Here the pH concentration of synthetic sea water was 8.2 and the strain rate is 1 x $10^{-6}$($sec^{-1}$) and test temperature ranges varied from $-60^{\circ}C$ to $80^{\circ}C$. It could be confirmed the fact that wet specimens tested at a particular test temperature ranges were appeared the eviences of SCC such as con-planar, mirror and hackle zone. Moreover, SCC of GFRP in sea water was characterised by falt fracture surfaces with only small amounts of fiber pull-out, in partial.

Tribological Characteristics of Surface Modification by Carbon Fiber Reinforced Plastics (탄소섬유복합재의 표면개질에 따른 트라이볼로지 특성에 관한 연구)

  • Kim, Jong-Hee;Jeon, Seung-Hong;Lee, Bong-Goo;Oh, Seong-Mo
    • Tribology and Lubricants
    • /
    • v.18 no.1
    • /
    • pp.61-67
    • /
    • 2002
  • The objective of the present study was to investigate the characteristics of the friction and wear according to the amount of ion-irradiation for the carbon fiber reinforced plastic (CFRP). Unidirectional carbon fiber reinforced composites were fabricated with epoxy resin as a matrix and carbon fiber as a reinforcement, and its surface was modified by the ion-assisted reaction. When the amount of ion-irradiation was $1{\times}10^{16}$ $ions/cm^{2}$. the friction coefficients of composites were about 0.1 and the wear mode was stable. whereas, the friction coefficient of non-treatment composites were about 0.16 and the wear mode was very unstable. But if the amount of ion-irradiation was $5{\times}10^{16}$ $ions/cm^{2}$, the friction coefficients were higher rather than that of $1{\times}10^{16}$ $ions/cm^{2}$ Consequently. the amount of ion-irradiation was not in proportion to the friction coefficients, and it was conformed that the optimal conditions would exist between both of them.