• Title/Summary/Keyword: Resin cement thickness

검색결과 72건 처리시간 0.022초

도재 라미네이트의 두께의 따른 레진 시멘트의 표면경도에 관한 연구 (THE SURFACE HARDNESS OF RESIN CEMENT BY THICKNESS OF PORCELAIN LAMINATE)

  • 강석구;동진근;진태호
    • 대한치과보철학회지
    • /
    • 제31권4호
    • /
    • pp.506-514
    • /
    • 1993
  • The purpose of this study was to evaluate the effect of porcelain laminate thickness on polymerization of resin cement. G-Cera resin bonding system(G-C int., Japan) was used in this study and Heliolux II (Vivadent, Austria) was used for polymerization of resin cement. The thickness of porcelain laminates used in this study were 0.5mm, 1.0mm and 1.5mm and the degree of polymerization of resin cement was measured by microhardness theater(Matsuzawa, Model MXT-70, Japan). The obtained results were as follows : 1. The surface hardness of resin cements increaing the thickness of poreclain laminate was decreased. 2. The surface hardness of resin cements increasing the curing time was decreased.

  • PDF

Influence of cement thickness on resin-zirconia microtensile bond strength

  • Lee, Tae-Hoon;Ahn, Jin-Soo;Shim, June-Sung;Han, Chong-Hyun;Kim, Sun-Jai
    • The Journal of Advanced Prosthodontics
    • /
    • 제3권3호
    • /
    • pp.119-125
    • /
    • 2011
  • PURPOSE. The aim of this study was to evaluate the influence of resin cement thickness on the microtensile bond strength between zirconium-oxide ceramic and resin cement. MATERIALS AND METHODS. Thirty-two freshly extracted molars were transversely sectioned at the deep dentin level and bonded to air-abraded zirconium oxide ceramic disks. The specimens were divided into 8 groups based on the experimental conditions (cement type: Rely X UniCem or Panavia F 2.0, cement thickness: 40 or 160 ${\mu}m$, storage: thermocycled or not). They were cut into microbeams and stored in $37^{\circ}C$ distilled water for 24 h. Microbeams of non-thermocycled specimens were submitted to a microtensile test, whereas those of thermocycled groups were thermally cycled for 18,000 times immediately before the microtensile test. Three-way ANOVA and Sheffe's post hoc tests were used for statistical analysis (${\alpha}$=95%). RESULTS. All failures occurred at the resin-zirconia interface. Thermocycled groups showed lower microtensile bond strength than non-thermocycled groups (P<.001). Differences in cement thickness did not influence the resin-zirconia microtensile bond strength given the same resin cement or storage conditions (P>.05). The number of adhesive failures increased after thermocycling in all experimental conditions. No cohesive failure was observed in any experimental group. CONCLUSION. When resin cements of adhesive monomers are applied over air-abraded zirconia restorations, the degree of fit does not influence the resin-zirconia microtensile bond strength.

Die spacer의 두께에 따른 복합레진 inlay의 치은 변연부 미세누출 및 접착양태에 관한 연구 (GINGIVAL MARGIAL LEAKAGE AND BONDING PATTERN OF THE COMPOSITE RESIN INLAY ACCORDING TO VARIOUS THICKNESS OF DIE SPACER)

  • 박태일;신동훈;홍찬의
    • Restorative Dentistry and Endodontics
    • /
    • 제20권1호
    • /
    • pp.152-163
    • /
    • 1995
  • This experiment was performed to observe the adhesion pattern and microleakage in the gingival margin according to variation in the resin cement thickness which results from thickness of Die spacer. which is considered to effect the adaptability of the composite resin inlays. Clearfil CR inlays were fabricated on stone models with CR Sep applicated once and Nice fit twice, 4 times, and 6 times each. After 2nd curing within the CRC-100 oven, CR inlays were cemented with CR inlay cement. Dye(2% methylene blue) penetration and adhesion pattern were evaluated after sectioning of gingival margin into :3 pieces. The results were as follows ; 1. The thickness of resin cement showed unevenchanging pattern with that of die spacer, namely, it was increased until 4 times' application of Nice-Fit but was decreased with 6 times' application of that. 2. The degree of dye penetration wasn't affected by cement thickness within a limited value. 3. Most of dye penetration was shown through the interface between cement and enamel rather than the interface between cement and CR inlay. This shows that the affinity of resin cement for CR inlay was superior to the adhesive strength with tooth structure. 4. No gap was found at the interface between enamel and cement but some showed separation between dentin and cement. It is concidered that the contraction force of cement was less than the bond strength with the enamel. 5. Lots of voids were found in the CR inlay and resin cement. There was a pooling tendency of bonding agent and cement in the axiogingival line angle portion. 6. In some specimens, cracks were shown in enamel margin. From this it could be considered that cavity preparation and surface treatment weakened the tooth structure.

  • PDF

전부도재관에 사용되는 레진시멘트의 색안정성에 관한 연구 (THE STUDY ON THE COLOR STABILITY OF RESIN CEMENT USED IN ALL CERAMIC CROWN)

  • 이태희;이영수;박원희
    • 대한치과보철학회지
    • /
    • 제42권1호
    • /
    • pp.41-48
    • /
    • 2004
  • Statement of problem : The Cement as well as restoration required esthetics for making natural color restoration. Purpose : The purpose of this research is to evaluate color stability of restoration intermediated by resin cement which is used for cementation of all ceramic crown. Material and method : After making Empress 2 ingot into the size of $10mm{\times}10mm{\times}1mm$ according to indication, it glazed and made 48 Empress 2 blocks. Three kinds of resin cement(Rely-X, Variolink 2, Choice) having same shade cemented between Empress 2 blocks and Ivory shade tiles and made 48 specimens in the thickness of $30{\mu}m$ and $80{\mu}m$. After measureing color difference using spectorphotomenter, the result of this study were as follows. Results : The color difference of resin cement used in experiment increased in the order Rely-X, Variolink 2. As the thickness of cement increases, the color difference of all kinds of cement found statistically sifnificant difference but, this result is clinically acceptable. Conclusion : More resarch would have to be done in order to decrease the color difference as cement's thickness.

The effect of thickness and translucency of polymer-infiltrated ceramic-network material on degree of conversion of resin cements

  • Barutcigil, Kubilay;Buyukkaplan, Ulviye Sebnem
    • The Journal of Advanced Prosthodontics
    • /
    • 제12권2호
    • /
    • pp.61-66
    • /
    • 2020
  • PURPOSE. The aim of the present study was to determine the degree of conversion of light- and dual-cured resin cements used in the cementation of all-ceramic restorations under different thicknesses of translucent (T) and high-translucent (HT) polymer-infiltrated ceramic-network (PICN) material. MATERIALS AND METHODS. T and HT PICN blocks were prepared at 0.5, 1.0, 1.5, and 2.0 mm thicknesses (n=80). Resin cement samples were prepared with a diameter of 6 mm and a thickness of 100 ㎛. Light-cured resin cement was polymerized for 30 seconds, and dual-cure resin cement was polymerized for 20 seconds (n=180). Fourier transform infrared spectroscopy (FTIR) was used for degree of conversion measurements. The obtained data were analyzed with ANOVA and Tukey HSD, and independent t-test. RESULTS. As a result of FTIR analysis, the degree of conversion of the light-cured resin cement prepared under 1.5- and 2.0-mm-thick T and HT ceramics was found to be lower than that of the control group. Regarding the degree of conversion of the dual-cured resin cement group, there was no significant difference from the control group. CONCLUSION. Within the limitation of present study, it can be concluded that using of dual cure resin cement can be suggested for cementation of PICN material, especially for thicknesses of 1.5 mm and above.

Shear bond strength of zirconia to resin: The effects of specimen preparation and loading procedure

  • Chen, Bingzhuo;Yang, Lu;Lu, Zhicen;Meng, Hongliang;Wu, Xinyi;Chen, Chen;Xie, Haifeng
    • The Journal of Advanced Prosthodontics
    • /
    • 제11권6호
    • /
    • pp.313-323
    • /
    • 2019
  • PURPOSE. Shear bond strength (SBS) test is the most commonly used method for evaluating resin bond strength of zirconia, but SBS results vary among different studies even when evaluating the same bonding strategy. The purpose of this study was to promote standardization of the SBS test in evaluating zirconia ceramic bonding and to investigate factors that may affect the SBS value of a zirconia/resin cement/composite resin bonding specimen. MATERIALS AND METHODS. The zirconia/resin cement/composite resin bonding specimens were used to simulate loading with a shear force by the three-dimensional finite element (3D FE) modeling, in which stress distribution under uniform/non-uniform load, and different resin cement thickness and different elastic modulus of resin composite were analyzed. In vitro SBS test was also performed to validate the results of 3D FE analysis. RESULTS. The loading flat width was an important affecting factor. 3D FE analysis also showed that differences in resin cement layer thickness and resin composite would lead to the variations of stress accumulation area. The SBS test result showed that the load for preparing a SBS specimen is negatively correlated with the resin cement thickness and positively correlated with SBS values. CONCLUSION. When preparing a SBS specimen for evaluating bond performance, the load flat width, the load applied during cementation, and the different composite resins used affect the SBS results and therefore should be standardized.

도재인레이 하방에서 광중합형 복합레진과 이중중합형 복합레진시멘트의 미세경도와 중합률에 관한 연구 (THE MICROHARDNESS AND THE DEGREE OF CONVERSION OF LIGHT CURED COMPOSITE RESIN AND DUAL CURED RESIN CEMENTS UNDER PORCELAIN INLAY)

  • 김승수;조성식;엄정문
    • Restorative Dentistry and Endodontics
    • /
    • 제25권1호
    • /
    • pp.17-40
    • /
    • 2000
  • Resin cements are used for cementing indirect esthetic restorations such as resin or porcelain inlays. Because of its limitations in curing of purely light cured resin cements due to attenuation of the curing light by intervening materials, dual cured resin cements are recommended for cementing restorations. The physical properties of resin cements are greatly influenced by the extent to which a resin cures and the degree of cure is an important factor in the success of the inlay. The purpose of this study was to evaluate the influence of porcelain thickness and exposure time on the polymerization of resin cements by measuring the microhardness and the degree of conversion, to investigate the nature of the correlation between two methods mentioned above, and to determine the exposure time needed to harden resin cements through various thickness of porcelain. The degree of resin cure was evaluated by the measurements of microhardness [Vickers Hardness Number(VHN)] and degree of conversion(DC), as determined by Fourier Transform Infrared Spectroscopy(FTIR) on one light cured composite resin [Z-100(Z)] and three dual cured resin cements [Duo cement(D), 3M Resin cement(R), and Dual cement(DA)] which were cured under porcelain discs thickness of 0mm, 1mm, 2mm, 3mm with light exposure time of 40sec, 80sec, 120sec, and regression analysis was performed to determine the correlation between VHN and DC. In addition, to determine the exposure time needed to harden resin cements under various thickness of porcelain discs, the changes of the intensity of light attenuated by 1mm, 2mm, and 3mm thickness of porcelain discs were measured using the curing radiometer. The results were obtained as follows ; 1. The values of microhardness and the degree of conversion of resin cements without intervening porcelain discs were 31~109VHN and 51~63%, respectively. In the microhardness Z was the highest, followed by R, D, DA. In the degree of conversion, D and DA was significantly greater than Z and R(p<0.05). 2. The microhardness and the degree of conversion of the resin cements decreased with increasing thickness of porcelain discs, and increased with increasing exposure time, D and R showed great variation with inlay thickness and exposure time, whereas, DA showed a little variation. 3. The intensity of light through 1mm, 2mm, and 3mm porcelain inlays decreased by 0.43, 0.25, and 0.14 times compared to direct illumination, and the respective needed exposure times are 53 sec, 70 sec, and 93 sec. In D and R, 40 sec of light irradiation through 2mm porcelain disc and 80 sec of light irradiation through 3mm porcelain disc were not enough to complete curing. 4. The microhardness and the degree of conversion of the resin cements showed a positive correlationship(R=0.791~0.965) in the order of R, D, Z, DA. As the thickness of porcelain discs increased, the decreasing pattern of microhardness was different from that of the degree of conversion, however.

  • PDF

지르코니아 투명도 및 두께에 따른 레진 시멘트의 중합률 (The degree of conversion of dual-cured resin cement as a function of transmittance and thickness)

  • 노형록;주규지;선금주
    • 대한치과기공학회지
    • /
    • 제38권3호
    • /
    • pp.193-199
    • /
    • 2016
  • Purpose: The purpose of this study was to know of photopolymerization effect of self-etch dual-cured resin cement on different transmittance and thickness of zirconia disks. Methods: The two types of transparent and opaque zirconia speciments were prepared. The five speciments of each groups were seperated with 0.5mm and 1.0mm thickness. Degree of conversion(DC) were studied by FT-IR spectroscopy using ATR method before and after irradidaion for 40 sec. Results: The relative DC was showed the higher results of ZS5 as compared with ZS10 (p < 0.05). And OP5 and OP10 were lower results than ZS10 (p < 0.05). Conclusion: The photopolymerization effect of dual-cured resin cement were affected by the transmittance and thickness of zirconia.

Evaluation of the resin cement thicknesses and push-out bond strengths of circular and oval fiber posts in oval-shapes canals

  • Er, Ozgur;Kilic, Kerem;Kilinc, Halil Ibrahim;Aslan, Tugrul;Sagsen, Burak
    • The Journal of Advanced Prosthodontics
    • /
    • 제7권1호
    • /
    • pp.15-20
    • /
    • 2015
  • PURPOSE. The aim of this study was to evaluate whether the push-out bond strength varies between oval and circular fiber posts, and to examine the effect on the resin cement thicknesses around the posts. MATERIALS AND METHODS. Eighteen mandibular premolar roots were separated into two groups for oval and circular fiber posts systems. Post spaces were prepared and fiber posts were luted to the post spaces. Roots were cut horizontally to produce 1-mm-thick specimens. Resin cement thicknesses were determined with a metallographic optical microscope and push-out tests were done. RESULTS. No significant differences were observed in terms of push-out bond strength between the oval and circular fiber posts (P>.05) The resin cement thicknesses of the oval posts were greater than those of the circular posts group in the coronal, middle and apical specimens (P<.05). CONCLUSION. In the light of these results, it can be stated that resin cement thickness does not affect the push-out bond strength.

치과용 레진 시멘트의 피막도에 관한 실험적 연구 (AN EXPERIMENTAL STUDY ON THE FILM THICKNESS OF RESIN LUTING CEMENTS)

  • 조국현;송창용;송광엽;박찬운
    • 대한치과보철학회지
    • /
    • 제32권2호
    • /
    • pp.212-224
    • /
    • 1994
  • The purpose of this study was to evaluate and compare film thickness of five kinds of resin luting cements [Comspan, Panavia Ex, Maryland bridge adhesive, All-bond C & B cementation kit, and Super-bond C & B]. Zinc-phosphate cement and glass-ionomer cement were used as the control group. In order to measure the film thickness the methods used were in broad compliance with ADA Specification No. 8, a tapered-die system that simulates clinical conditions more closely, and the connected tapered-die system that simulates bridge conditions. The inorganic filler size of resin cements was also examined with scanning electron micrographs. The results were obtained as follows ; 1. The film thickness of resin cements was increased in the order of Comspan, Panavia Ex, Super-bond C & B, Maryland bridge adhesive, and All-bond C & B cementation kit. Maryland bridge adhesive and All-bond C & B cementation kit showed significantly higher film thickness than the control group(p<0.01). 2. For all resin cements, there was a significant difference of film thickness between the ADA method and the tapered-die system. Generally, the tapered-die system demonstrated lower film thickness than the ADA method(p<0.01). 3. There was no significant difference in film thickness between the tapered-die system and the tapered-die bridge system in all resin cements(p<0.01). 4. The scanning electron microscope showed that the cement with larger filler had a tendency to be higher in film thickness.

  • PDF