• Title/Summary/Keyword: Resin casting technique

Search Result 22, Processing Time 0.021 seconds

A study on the Rapid Tooling Using Metal Powder Filled Resin (금속분말 혼합수지를 이용한 쾌속 형 제작에 관한 연구)

  • Kim, Peom-Su;Bae, Won-Byung;Jeong, Hae-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.36-44
    • /
    • 1999
  • The rapid Tooling technique is classified into two methods: one to directly utilize the model which was made by rapid prototyping technologies for dies, and the other to make a transferred type using the model as a master model and create dies and molds using it. In this study, the Al powder filled resin was made several mixed ratios and meshes sizes, and applied to slurry casting. And, variation of mechanical characteristics such as the shrinkage rate, the tensile strength, the elongation, the hardness, and surface roughness, are measured to compare. Consequently, as higher is the powder mixed ration and as smaller is the grain size of the power, the mechanical characteristics of the final mold are improved. Finally, the metal short fiber which can be fabricated easily and cheaply, if the self-excited vibration of an elastic tool, was also applied to slurry casting. It has been found tat the hardness gets higher, while the shrinkage rate lower, if mixed with short fiber.

  • PDF

A Study on Manufacturing Resin-based Blow Mold using SLS Parts and Forming Prototype-car Parts (SLS 조형품을 이용한 수지형 블로우 몰드 제작 및 시작차 부품성형에 관한 연구)

  • 양화준;황보중;이석희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.124-131
    • /
    • 2000
  • Rapid Prototyping(RP) models are no longer used only for design verification. Currently, parts built utilizing layer manufacturing technology can be employed as functional prototypes and as patterns or tools for different manufacturing processes such as vacuum casting, investment casting, injection molding, precise casting and sand casting. This trend of Rapid Prototyping application meets the requirement of concurrent engineering and its range covers a more spreaded area. The aim of this paper is saving the manufacturing lead time and cost of plastic parts having hollow space shapes used by prototype-car. Using rapid prototype patterns, made by the Selective Laser Sintering(SLS) technique, a new approach of manufacturing resin-based blow mold is discussed. It has a great potential fur making prototype-car parts with the batch size of under 200 parts, in case of rapid modification due to a subsequent design changes in developing stage. So, the process proposed in this research shows reduction of process time and manufacturing cost when compared with the conventional process such as a Zinc Alloy fur Stamping(ZAS) mold.

  • PDF

MARGINAL FIT RELATED TO MARGIN TYPES OF GLASS INFILTRATED ALUMINA CORE FABRICATED FROM AQUEOUS-BASED ALUMINA TAPE

  • Oh, Nam-Sik;Yu, Byeung-Su;Kim, Il-Kyu;Choi, Jin-Ho;Kim, Dae-Joon;Park, Il-Seok;Lee, Myung-Hyun;Lee, Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.3
    • /
    • pp.262-268
    • /
    • 2002
  • Statement of problem. In-Ceram system is one of the all-ceramic crowns that can be used in anterior 3 unit fixed partial dentures and posterior single crowns. The alumina core used in In-Ceram system is manufactured using slip-casting technique. The slip-casting technique is difficult and technique sensitive. To improve this problem, tape-casting method was introduced into dentistry. There were no studies to examine the effect of margin design on the margin fitness of all-ceramic crowns fabricated from alumina tape. Purpose. The purpose of this study was to compare the marginal fitness of glass infiltrated alumina core fabricated from aqueous-based alumina tape according to different margin types ($90^{\circ},\;110^{\circ},\;135^{\circ}$ shoulder margin). Material and method. Three upper central resin incisors were prepared with $90^{\circ},\;110^{\circ}$, and $135^{\circ}$ shoulder margins for all-ceramic crowns, respectively. The resin teeth were duplicated and master die and special plaster die were made as usual. After alumina cores were fabricated from aqueous-based alumina tape, cores were cemented to each 15 epoxy dies replicated from three resin teeth with resin cement. These cemented cores were embedded in epoxy resin. Specimens were cut mesiodistally and buccolingually. Marginal gap and discrepancy were measured under microscope. Results. The marginal gap and discrepancy of $90^{\circ}$ marginal angle was $75.1{\mu}m,\;86.6{\mu}m,\;110^{\circ}$ marginal angle was $41.5{\mu}m,\;50.7{\mu}m$ and $135^{\circ}$ marginal angle was $51.7{\mu}m,\;54.2{\mu}m$, respectively. The smallest value was seen in 110 (angle, which was statistically significant compared to that of $90^{\circ}$ angle (p<0.05). Conclusion. Marginal fitness of alumina cores made of alumina tape with $110^{\circ}$ shoulder margin was best and others were clinically acceptable.

The design analysis of epoxy casting resins insulator for distribution line (에폭시 캐스팅수지 애자의 형상해석)

  • Song, I.K.;Kim, Y.L.;Park, G.P.;Kwak, H.R.;Jeon, S.J.;Kwon, D.J.;Kim, S.K.
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.411-413
    • /
    • 1995
  • Porcelain insulators have been used for the almost all of the suspension insulators in distribution line. However, Puncture breakdowns in porcelain insulators caused by westing cement between metal fitting and porcelain material. There is little puncture breakdown in Epoxy casting insulator. This paper presents a new design technique for the development of suspension insulator used Cycloaliphatic Epoxy resin. The design was performed on the basis of two conditions (weather conditions for the past 30 years and the existing installation conditions of KEPCO) and was proven of its adaptability by FEM method.

  • PDF

An evaluation of quality of dental prostheses printed by dental 3-dimensional printing system (치과용 3D 프린팅 시스템에 의해 출력된 보철물의 품질 평가)

  • Han, Man-So
    • Journal of Technologic Dentistry
    • /
    • v.38 no.3
    • /
    • pp.185-191
    • /
    • 2016
  • Purpose: The purpose of this study were to evaluate the quality of dental prostheses printed by 3-dimensional printing system. Methods: Mater model was prepared and ten study models were fabricated. Ten single crowns were printed by 3D-printing system(Resin group) and another ten single crowns using casting method were manufactured(Metal group). The marginal adaptation of single crowns were measured using by silicone replica technique. Silicone replicas were sectioned four times. The marginal adaptations were evaluated using by digital microscope. Statistical analyses were performed with Mann-Whitney test(${\alpha}=0.05$). Results: $Mean{\pm}standard$ deviations of all marginal adaptations were $92.1(20.0){\mu}m$ for Metal group and $69.7(12.3){\mu}m$ for Resin group. Two groups were no statistically significant differences(p>0.05). Conclusion: Marginal adaptation of single crowns printed by 3D-printing system were ranged within the clinical recommendation.

Evaluation of marginal and internal fit of metal copings fabricated by selective laser melting (SLM 방식으로 제작한 도재관 금속하부구조물의 변연 및 내면 적합도 평가)

  • Sung-Ryung Bae;Ha-Bin Lee;Mi-Jun Noh;Ji-Hwan Kim
    • Journal of Technologic Dentistry
    • /
    • v.45 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Purpose: To evaluate the marginal and internal fit of metal coping fabricated by a metal three-dimensional (3D) printer that uses selective laser melting (SLM). Methods: An extraoral scanner was used to scan a die of the prepared maxillary right first molar, and the coping was designed using computer-aided design software and saved as an stereo lithography (STL) file. Ten specimens were printed with an SLM-type metal 3D printer (SLM group), and 10 more specimens were fabricated by casting the castable patterns output generated by a digital light processing-type resin 3D printer (casting the 3D printed resin patterns [CRP] group). The fit was measured using the silicon replica technique, and 8 points (A to H) were set per specimen to measure the marginal (points A, H) and internal (points B~G) gaps. The differences among the groups were compared using the Mann-Whitney U-test (α=0.05). Results: The mean of marginal fit in the SLM group was 69.67±18.04 ㎛, while in the CRP group was 117.10±41.95 ㎛. The internal fit of the SLM group was 95.18±41.20 ㎛, and that of the CRP group was 86.35±32 ㎛. As a result of statistical analysis, there was a significant difference in marginal fit between the SLM and CRP groups (p<0.05); however, there was no significant difference in internal fit between the SLM group and the CRP group (p>0.05). Conclusion: The marginal and internal fit of SLM is within the clinically acceptable range, and it seems to be applicable in terms of fit.

Fitting accuracy of ceramic veneered Co-Cr crowns produced by different manufacturing processes

  • von Maltzahn, Nadine Freifrau;Bernhard, Florian;Kohorst, Philipp
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.2
    • /
    • pp.100-106
    • /
    • 2020
  • PURPOSE. The purpose of this in vitro study was to evaluate the fitting accuracy of single crowns made from a novel presintered Co-Cr alloy prepared with a computer-aided design and computer-aided manufacturing (CAD/CAM) technique, as compared with crowns manufactured by other digital and the conventional casting technique. Additionally, the influence of oxide layer on the fitting accuracy of specimens was tested. MATERIALS AND METHODS. A total of 40 test specimens made from Co-Cr alloy were investigated according to the fitting accuracy using a replica technique. Four different methods processing different materials were used for the manufacture of the crown copings (milling of presintered (Ceramill Sintron-group_cer_sin) or rigid alloy (Tizian NEM-group_ti_nem), selective laser melting (Ceramill NPL-group_cer_npl), and casting (Girobond NB-group_gir_nb)). The specimens were adapted to a resin model and the outer surfaces were airborne-particle abraded with aluminum oxide. After the veneering process, the fitting accuracy (absolute marginal discrepancy and internal gap) was evaluated by the replica technique in 2 steps, before removing the oxide layer from the intaglio surface of the crowns, and after removing the layer with aluminum oxide airborne-particle abrasion. Statistical analysis was performed by multifactorial analysis of variance (ANOVA) (α=.05). RESULTS. Mean absolute marginal discrepancy ranged between 20 ㎛ (group_cer_npl for specimens of Ceramill NPL) and 43 ㎛ (group_cer_sin for crowns of Ceramill Sintron) with the oxide layer and between 19 ㎛ and 28 ㎛ without the oxide layer. The internal gap varied between 33 ㎛ (group_ti_nem for test samples of Tizian NEM) and 75 ㎛ (group_gir_nb for the base material Girobond NB) with the oxide layer and between 30 ㎛ and 76 ㎛ without the oxide layer. The absolute marginal discrepancy and the internal gap were significantly influenced by the fabrication method used (P<.05). CONCLUSION. Different manufacturing techniques had a significant influence on the fitting accuracy of single crowns made from Co-Cr alloys. However, all tested crowns showed a clinically acceptable absolute marginal discrepancy and internal gap with and without oxide layer and could be recommended under clinical considerations. Especially, the new system Ceramill Sintron showed acceptable values of fitting accuracy so it can be suggested in routine clinical work.

Comparison of internal adaptation of removable partial denture metal frameworks made by lost wax technique and printing technique of pattern using CAD (Lost wax technique과 CAD를 이용한 pattern의 프린팅 방식으로 제작된 가철성 국소의치 금속구조물의 적합도 비교)

  • Choi, Wonjun;Woo, Yi-Hyung;Kim, Hyeong-Seob;Paek, Janghyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • Lost wax technique of casting wax patterns has been used principally to make metal frameworks of removable partial dentures. Since the development of digital technology and CAD, metal frameworks can be built through digital surveying and framework designing. Many cases proved that resin patterns made by CAD printing method were well adapted to internal oral structure and final metal frameworks also showed good internal adaptation as well. The metal frameworks of a removable partial denture were made by both lost wax technique and CAD technique and were applied to a patient with severe alveolar bone loss. Using CAD data and fit checker, internal adaptation of both metal frameworks were evaluated by comparing the gap between surveyed crown and its structure. This study is to prove that metal frameworks by both techniques showed adaptation that can be applied in clinical field.

A study of introduction for using Laser in dental prosthesis (치과보철영역에 레이저 이용을 위한 이론적 고찰)

  • Park, Myoung-Ho;Bae, Bong-Jin;Lee, Hwa-Sik
    • Journal of Technologic Dentistry
    • /
    • v.30 no.1
    • /
    • pp.131-139
    • /
    • 2008
  • It's very important to find the most appropriate adhesion technique available, taking into consideration factors such as biocompatibility, non-corrosiveness, mechanical stability, etc. Laser welding is the best choice you can make because from a mechanical viewpoint, a laser welded surface has better particle structure than does a casted particle structure. Furthermore, it requires no additional material and the same metal alloy which is used when casting can be used. Therefore, the resulting mixture will consist of a single alloy, instead of utilizing different alloy combinations. Another benefit is the low economic cost. The most beneficial aspects of laser welding is that it is biologicallly friendlly, doesn't require soldering, can fuse different metal alloys together, and can weld on heat-sensitive spots(E.g. around resin or ceramic). A consistent strong pulse is possible. This technique is capable of welding on master models and creates accurate welds. It is capable of due to its stronger, non-corrosive microscope, which allows 25times magnification during the soldering process. This is possible because of its high stability from the tiny particle structure.

  • PDF

An evaluation of marginal fit of resin single crown manufactured using a dental 3D printer (치과용 3D 프린터를 활용해 제작된 레진 단일치관보철의 변연적합 평가)

  • Ki-Baek Kim
    • Journal of Technologic Dentistry
    • /
    • v.44 no.4
    • /
    • pp.126-131
    • /
    • 2022
  • Purpose: The purpose of this study is to evaluate the quality of dental fixed prostheses fabricated by 3DP (three-dimensional printing). Methods: Ten main models were prepared for the study. Ten specimens were printed by 3DP (3DP group). Ten specimens were fabricated by the lost wax technique and casting method to complete the control group (LWC group). The marginal fit was measured for 20 specimens. The measurement of marginal fit was performed using the silicon replica technique. Finally, the marginal fit of 10 specimens from each group was calculated. An independent sample t-test was run to see if the calculated averages for the two groups were mutually significant (α=0.05). Results: According to the experimental results, the mean marginal fit of the 3DP group was 71.9 ㎛, and the LWC group was 55.3 ㎛. The means of the two groups were found to be significantly different (p<0.001) in the results of the independent sample t-test. Conclusion: The marginal fit of fixed dental prostheses produced by 3DP technology was examined with values greater than those fabricated by traditional technology. However, as it appeared to be a value within the range of clinically acceptable range recommended by numerous studies, it was determined that clinical application would be feasible.