• Title/Summary/Keyword: Resin Composition

Search Result 207, Processing Time 0.026 seconds

THE CHANCE IN TRANSVERSE STRENGTH OF DENTURE BASE AFTER RELINE PROCEDURE (개상한 의치상의 전단굴곡강도 변화)

  • Kim, Seon-Young;Vang, Mong-Sook
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.6
    • /
    • pp.782-790
    • /
    • 1999
  • The purpose of this study was to evaluate the effect of proportional thickness of various reline materials on the transverse strength of denture base. The denture base resin used in this study was Vertex $RS^{(R)}$ (Dentimex Zeist., Holland). The reline resins used were Tokuso $rebase^{(R)}$ normal set (Tokuyama Corp., Japan), $Rebaron^{(R)}$ (GC Corp., Japan), $Kooliner^{TM}$ (GC INC., U.S.A), New $truliner^{TM}$(Harry J. Bosworth Co., U.S.A). The bulk specimens with 2.5mm thickness of denture base were prepared as the control group. Group 1 was fabricated with 2.0mm thickness of denture base and 0.5mm reline material, group 2 with 1.5:1.0mm, group 3 with 1.0:1.5mm, group 4 with 0.5:2.0mm composition. Measurements of transverse strength were taken for each specimens The results were as follows: 1. Regardless of the reline resin type, the transverse strength of denture base was decreased after reline procedure. 2. The transverse strength according to the reline resin type was decreased in the following order : Rebaron, Tokuso rebase, Kooliner, and then New truliner and there was a significant difference among the reline materials (P<0.05). 3. The strength of the relined denture base generally decreased as the proportional thickness of the denture reline material increased. These results suggest that increasing the proportional thickness of the reline material progressively decreased the strength of the relined denture base. Thus, the denture base should not be unnecessarily altered during the reline procedure.

  • PDF

Synthesis of Modified Silane Acrylic Resins and Their Physical Properties as Weather-Resistant Coatings (실란 변성아크릴수지의 합성과 고내후성 실리콘/아크릴수지 도료의 도막물성)

  • Park, Hong-Soo;Hong, Seok-Young;Kim, Song-Hyoung;Yoo, Gyu-Yeol;Ahn, Sung-Hwan;Hahm, Hyun-Sik;Kim, Seong-Kil
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.10-22
    • /
    • 2007
  • To prepare weather-resistant silicone/acrylic resin coatings for an architectural purpose, tetrapolymers were synthesized by a radical polymerization. 3-Methacryloxypropyltrimethoxysilane (MPTS) as a silicone monomer and n-butyl acrylate, methyl methacrylate, and n-butyl methacrylate as acrylic monomers were used. The compositions of monomers were adjusted to fix the glass transition temperature of acrylic polymer for $20^{\circ}C$. The composition of MPTS in the synthesized polymer were varied from 10 wt% to 30 wt%. On the basis of synthesized resin amber paints were prepared and their physical properties and effects for weatherability were examined. The presence of MPTS in silicone/acrylic resins generally resulted in low molecular weight and broad molecular weight distribution, and also lowered the viscosity of the copolymers. The coated films prepared from these resins showed good and balanced properties in general. Adhesion to the substrate was outstanding in particular. Weatherability tests were carried out in three different types such as outdoor exposure, QUV, and SWO. The test results showed that the silicone/acrylic resins containing 30 wt% of MPTS had weather-resistant properties.

Wettability of denture relining materials under water storage over time

  • Jin, Na-Young;Lee, Ho-Rim;Lee, Hee-Su;Pae, Ahran
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.1
    • /
    • pp.1-5
    • /
    • 2009
  • STATEMENT OF PROBLEM. Poor wettability of denture relining materials may lead to retention problems and patient discomfort. PURPOSE. Purpose of this study is to compare and evaluate wettability of nine denture relining materials using contact angle measurements under air and water storage over time. MATERIAL AND METHODS. Nine denture relining materials were investigated in this study. Two heat-curing polymethyl-methacrylate(PMMA) denture base materials: Vertex RS, Lang, one self-curing polyethyl-methacrylate(PEMA) chairside reline resin: Rebase II, six silicone relining materials: Mucopren soft, Mucosoft, $Mollosil^{{R}}$ plus, Sofreliner Touch, GC $Reline^{TM}$ Ultrasoft, Silagum automix comfort were used in this experiment. Contact angles were measured using high-resolution drop shape analysis system(DSA 10-MK2, KRUESS, Germany) under three conditions(in air after setting, 1 hour water storage, and 24 hours water storage). Nine materials were classified into three groups according to material composition(Group 1: PMMA, Group 2: PEMA, Group 3: Silicone). Mean values of contact angles were compared using independent samples t-test and one-way ANOVA, followed by a Scheffe's post hoc analysis($\alpha$=0.01). RESULTS. Contact angles of materials tested after air and water storage increased in the following order: Group 1(PMMA), Group 2(PEMA), Group 3(Silicone). Heat-cured acrylic denture base resins had more wettability than silicone relining materials. Lang had the highest wettability after 24 hours of water storage. Silicone relining materials had lower wettability due to their hydrophobicity. Wettability of all denture relining materials, except Rebase II and $Mollosil^{{R}}$ plus, increased after 24 hours of water storage. CONCLUSIONS. Conventional heat-cured resin showed the highest wettability, therefore, it can be suggested that heat-cured acrylic resin is material of choice for denture relining materials.

Thermal Conducting Behavior of Composites of Conjugated Short Fibrous-SiC Web with Different Filler Fraction (짧은 섬유상간의 접합을 가진 Silicon Carbide Web 복합재료의 분율별 열전도 거동)

  • Kim, Tae-Eon;Bae, Jin Chul;Cho, Kwang Yeon;Lee, Dong Jin;Shul, Yong-Gun
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.549-555
    • /
    • 2012
  • Silicon carbide(SiC) exhibits many unique properties, such as high strength, corrosion resistance, and high temperature stability. In this study, a SiC-fiber web was prepared from polycarbosilane(PCS) solution by employing the electrospinning process. Then, the SiC-fiber web was pyrolyzed at $1800^{\circ}C$ in argon atmosphere after it was subjected to a thermal curing. The SiC-fiber web (ground web)/phenolic resin (resol) composite was fabricated by hot pressing after mixing the SiC-fiber web and the phenolic resin. The SiC-fiber web composition was controlled by changing the fraction of filler (filler/binder = 9:1, 8:2, 7:3, 6:4, 5:5). Thermal conductivity measurement indicates that at the filler content of 60%, the thermal conductivity was highest, at 6.6 W/mK, due to the resulting structure formed by the filler and binder being closed-packed. Finally, the microstructure of the composites of SiC-fiber web/resin was investigated by FE-SEM, EDS, and XRD.

Effect of Silane Coupling Agent on the Interfacial Adhesion and Mechanical Properties of Polyketone Fiber Reinforced Epoxy Composites (실란커플링제 처리가 폴리케톤섬유/에폭시 복합재료의 계면접착성 및 물성에 미치는 영향)

  • Jo, Hani;Yang, Jee-Woo;Lim, Hyeon Soo;Oh, Woo Jin;Lee, Seung Goo
    • Textile Coloration and Finishing
    • /
    • v.29 no.2
    • /
    • pp.77-85
    • /
    • 2017
  • The interfacial adhesion between fiber and matrix affects the physical properties of fiber reinforced composites. In this study, 3-(Methacryloyloxy)propyltrimethoxy silane(MPS) coupling agent was used to increase the interfacial adhesion between polyketone fiber and epoxy resin. The change of surface chemical composition of polyketone fiber treated with MPS was analyzed using a FTIR-ATR. The interfacial bonding between fiber and resin increased with silane coupling agent largely. Consequently, interfacial shear strength(IFSS) was enhanced with increasing concentration of MPS coupling agent and thus, the physical properties of the composites such as flexural properties and dynamic mechanical properties were changed. Flexural strength and modulus increased when the MPS concentration was higher than 0.5wt%. The dynamic storage modulus of Polyketone/Epoxy composites treated with MPS was higher than that of the untreated one. When the MPS concentration of 3wt%, the highest storage modulus was obtained.

EFFECT OF PH AND STORAGE TIME ON THE ELUTION OF RESIDUAL MONOMERS FROM POLYMERIZED COMPOSITE RESINS (산도변화와 침지시간이 광중합 복합레진의 잔류단량체 유출에 미치는 영향)

  • Jeon, Cheol-Min;Yoo, Hyun-Mi;Kwon, Hyuk-Choon
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.3
    • /
    • pp.249-266
    • /
    • 2004
  • The purpose of this study was to determine whether pH and time has any influence on the degradation behavior of composite restoration by analyzing the leached monomers of dental composites qualitatively and quantitatively after storage in acetate buffer solution as a function of time using high performance liquid chromatography (HPLC) / mass spectrometer. Materials and Methods:Three commercial composite restorative resin materials (Z-250, Heliomolar and Aeliteflo) with different matrix structure and filler composition were studied. Thirty specimens (7mm $diameter{\times}2mm$ thick) of each material were prepared. The cured materials were stored in acetate buffer solution at different pH (4, 7) for 1, 7 and 45days. As a reference, samples of unpolymerized composite materials of each product were treated with methanol (10mg/ml). Identification of the various compounds was achieved by comparison of their mass spectra with those of reference compound, with literature data. and by their fragmentation patterns. Data were analysed statistically using ANOVA and Duncan's test. Results:1. Amounts of leached TEGDMA in Aeliteflo were significantly larger than those of UDMA in Z-250 and Heliomolar at experimental conditions of different storage time and pH variation (p<0.001). 2. As to comparison of the amounts of leached monomers per sorage time, amounts of leached TEGDMA in Aeliteflo and UDMA in Z-250 and Heliomolar were increased in the pH 4 solution more significantly than in the pH 7 solution after 1day, 7days and 45days, respectively (p<0.001). 3. In total amounts of all the leached monomers with storage times, the overall amounts of pH 4 extracts were larger than those of pH 7 extracts for all resin groups, but there was no significant difference (p>0.05).

Impact of combined at-home bleaching and whitening toothpaste use on the surface and color of a composite resin

  • Carolina Meneghin Barbosa;Renata Siqueira Scatolin;Waldemir Francisco Vieira-Junior;Marcia Hiromi Tanaka;Laura Nobre Ferraz
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.3
    • /
    • pp.26.1-26.12
    • /
    • 2023
  • Objective: This in vitro study aimed to evaluate the effects of different whitening toothpastes on a composite resin during at-home bleaching with 10% carbamide peroxide. Materials and Methods: Sixty samples (7 mm × 2 mm) were used for color and roughness analyses, while another 60 samples (3 mm × 2 mm) were utilized to assess microhardness. The factors analyzed included toothpaste, for which 5 options with varying active agents were tested (distilled water; conventional toothpaste; whitening toothpaste with abrasive agents; whitening toothpaste with abrasive and chemical agents; and whitening toothpaste with abrasive, chemical, and bleaching agents). Brushing and application of whitening gel were performed for 14 days. Surface microhardness (SMH), surface roughness (Ra), and color (ΔL*, Δa*, Δb, ΔE*ab, and ΔE00) were analyzed. The Ra and SMH data were analyzed using mixed generalized linear models for repeated measures, while the color results were assessed using the Kruskal-Wallis and Dunn tests. Results: Between the initial and final time points, all groups demonstrated significant increases in Ra and reductions in SMH. No significant differences were found between groups for SMH at the final time point, at which all groups differed from the distilled water group. Conventional toothpaste exhibited the lowest Ra, while whitening toothpaste with abrasive agent had the highest value. No significant differences were observed in ΔL*, Δa*, and Δb. Conclusions: While toothpaste composition did not affect the color stability and microhardness of resin composite, combining toothbrushing with whitening toothpaste and at-home bleaching enhanced the change in Ra.

Physical Property of Carbon Fiber Reinforced Thermoplastic Polymer based Composites by Repeating Processing of PP Composition (PP 복합 조성물의 반복 가공에 의한 열가소성 폴리머 탄소섬유 강화 복합재료의 물리적 특성 변화 연구)

  • Jin-Woo Lee;Jae-Young Lee;Seoung-Bo Shin;Jae-Hyung Park;Hyun-Ju Park;Kyung-Hun Oh;Jin-Hyuk Huh;Yun-Hae Kim;Ji-Eun Lee
    • Composites Research
    • /
    • v.37 no.2
    • /
    • pp.68-75
    • /
    • 2024
  • Polypropylene (PP), a thermoplastic resin with excellent mechanical, thermal, chemical, and water resistance properties, has been attracting attention due to its economic efficiency and recyclability. However, repeated processing of thermoplastic resins can lead to property degradation, and the point at which quality degradation occurs varies depending on the processing conditions. In this study, we evaluated the performance changes of composite materials with repeated processing by blending PP resin with various additives and conducting extrusion and injection processes repeatedly. In addition, we evaluated the mechanical properties of composite materials to evaluate the effect of MFI value change during repeated processing on fiber impregnation in composite material processing.

Performance Improvement of Hydrogenated Bisphenol-A Epoxy Resin/Inorganic Additives Composites for Stone Conservation by Controlling Their Composition (석조문화재 보존을 위한 HBA계 에폭시 수지/무기 첨가물 복합체의 혼합조건에 따른 성능 개선 연구)

  • Choi, Yong Seok;Lee, Jung Hyun;Jeong, Yong Soo;Kang, Yong Soo;Won, Jongok;Kim, Jeong-Jin;Kim, Sa Dug
    • Journal of Conservation Science
    • /
    • v.28 no.3
    • /
    • pp.265-276
    • /
    • 2012
  • Physicochemical properties of HBA epoxy resins were controlled by varying hardener mixture and reactive diluent to improve applicability for stone conservation. The epoxy risen comprises hydrogenated Bisphenol-A based epoxide (HBA), fast curing agent (FH), slow curing agent poly(propyleneglycol)bis(2- aminopropylether) (SH) and difunctional polyglycidyl epoxide (DPE). Talc was used as an inorganic additive. The changes in viscosity and temperature during curing reactions depending on the composition of the epoxy resins were investigated. Additionally, bending, tensile and adhesive strengths were measured to identify the effective mechanical strength in stone conservation. Finally various compositions of epoxy resin/inorganic additives were developed for stone conservation by controlling cure kinetics and mechanical properties.

The Effect of Reactant Composition on the Synthesis of Resole-Type Phenolic Bead (레졸형 구형 페놀입자의 합성에서 반응물의 조성이 입자 형성에 미치는 영향)

  • Hahn, Dongseok;Kim, Hongkyeong
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.63-67
    • /
    • 2014
  • The effects of reactant composition on the particle size distribution, synthetic yield, and density of Phenol-formaldehyde bead were examined in the synthesis of resol-type phenolic resin. Decrease of the content of DI water as dispersion media can increase the viscosity of suspension, which may cause the difference of particle size distribution and aggregation. The average particle size of synthesized beads was also decreased with the increasing content of stabilizer which can affect the interfacial area. The amount of crosslinking agent showed no effect on the size distribution and synthetic yield, but it made a decrease in the density of synthesized bead due to the macropore in the bead.