• 제목/요약/키워드: Resilient Modulus

Search Result 101, Processing Time 0.02 seconds

Synthesis of Polyurethane/Epoxy Hybrid Resin used for Damper of Loudspeaker (스피커용 댐퍼에 사용되는 폴리우레탄/에폭시 하이브리드 수지의 합성)

  • Choi, Hyun-Seuk;Choi, Dong-Ho;Huh, Man-Woo
    • Textile Coloration and Finishing
    • /
    • v.28 no.1
    • /
    • pp.40-47
    • /
    • 2016
  • As a coating material for loudspeaker dampers, resilient polyurethane/epoxy hybrid resins were synthesized to replace conventional phenol resin and examined the physical properties, which are not only environmentally friendly but also not harmful to human. Five types of polyurethane resins were synthesized in the step-shot method using methylene diisocyanate, three polyols such as poly tetramethylene ether glycol(PTMEG, MW:2000), poly(1,4-buthylene adipate(PBAP, MW:2000), and poly carbonatediol(PCD, MW:2000), and three chain extenders such as ethylene glycol(EG), neopentyl glycol(NPG), and 1,4-buthandiol(1,4-BD). The five types of synthesized polyurethane resins and commercially available bisphenol A type epoxy resin were blended in weight ratios of 90:10, 70:30, and 50:50 to synthesize 15 types of polyurethane/epoxy hybrid resins. Among the polyurethane resins, the one that was synthesized using PCD and 1,4-BD showed excellent tensile strength, 100% modulus, low extension, and relatively high viscosity. Polyurethane/epoxy hybrid resins with higher epoxy resin contents showed better thermal properties and water resistance while those with higher polyurethane contents showed higher flexibility. The polyurethane/epoxy hybrid resin made by blending the polyurethane based on PCD and 1,4-BD with a bisphenol A type epoxy resin in a weight ratio of 70:30 was identified to be the most suitable to be used in speaker dampers.

Improvement of Low-quality Local Aggregates Using Coating Materials (코팅재료를 이용한 비쇄석골재의 성능향상)

  • Park Dae-Wook;Kim Min-Gu
    • International Journal of Highway Engineering
    • /
    • v.8 no.3 s.29
    • /
    • pp.39-48
    • /
    • 2006
  • A laboratory investigation was conducted wherein smooth, rounded, siliceous river gravel aggregates were coated with fine-grained polyethylene, carpet co-product, or cement + styrene butadiene rubber latex and used to prepare hot mix asphalt concrete specimens. Only the coarse (+ No.4) aggregates were coated. The concept was that the coatings would enhance surface roughness of the aggregates and, thus, produce asphalt mixtures with superior engineering properties. Hot mix asphalt specimens were prepared and evaluated using several standard and non-standard test procedures. Based on experiences during the coating processes and analyses of these limited test results, the following was concluded: All three aggregate coating materials increased Hveem and Marshall stability, tensile strength, and resilient modulus(stiffness). These findings are indicative of improved resistance to rutting and cracking in hot mix asphalt pavements prepared using coated gravel aggregates in comparison to similar uncoated gravel aggregates.

  • PDF

A Study on Engineering Characteristics of Asphalt Concrete Mixtures Using Filler with Recycled Waste Lime (부산석회를 채움재로 재활용한 아스팔트 혼합물의 공학적 특성)

  • Hwang, Sung-Do;Park, Hee-Mun
    • International Journal of Highway Engineering
    • /
    • v.7 no.3 s.25
    • /
    • pp.71-78
    • /
    • 2005
  • This study focuses on finding out engineering characteristics of asphalt concrete mixtures using mineral fillers with recycled waste lime, which is a by-product in the Soda Ash(Na2CO3) production course. The materials tested in this study were made with 25%, 50%, 75% and 100% of mixing ratio based on the conventional mineral filler ratio to analyze the recycle possibility of the waste lime. The asphalt concrete mixtures with recycled waste lime and hydrated lime, and conventional asphalt concrete mixtures were evaluated through their fundamental engineering properties such as Marshall stability, indirect tensile strength, resilient modulus, permanent deformation characteristics, moisture susceptibility and fatigue resistance. The results indicate that the application of recycled waste lime as mineral filler improves the permanent deformation characteristics, stiffness and fatigue endurance of asphalt concrete mixtures at the wide range of temperatures. It is also found that the mixtures with recycled waste lime show higher resistance against stripping than conventional asphalt concrete mixtures. It is concluded from various test results that the waste lime can be used as mineral fillers and especially can greatly improve resistance to permanent deformation of asphalt concrete mixtures at high temperatures.

  • PDF

Evaluation of Impact Energy Absorption Characteristics of Flexible Sand Asphalt Pavement for Pedestrian Way (보도용 연성 샌드 아스팔트 포장의 충격흡수 특성 평가)

  • Choi, Chang-jeong;Dong, Baesun;Kim, Kwang W.;Kim, Sungun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.3
    • /
    • pp.31-41
    • /
    • 2019
  • More than 90% of roadway in the world are paved as asphalt concrete pavement due to its excellent properties compared with other paving materials; excellent riding quality, flexibility, anti-icing property and easy maintenance-ability. In this study, to make best use of the softer property of the asphalt mixture, the flexible sand asphalt mixture (FSAM) was developed for pedestrian ways. The mix design was conducted to prepare FSAM using PG64-22 asphalt, screenings (sand) less than 5mm, crumb rubber, hydrated lime and limestone powder without coarse aggregate. The deformation strength ($S_D$), indirect tensile strength (ITS) and tensile strength ratio (TSR) tests were conducted to make sure durability of FSAM performance. The impact energy absorption and flexibility were measured by drop-boll test and the resilient modulus ($M_R$) test. The impact energy absorption of FSAM was compared with normal asphalt pavement, concrete pavement, stone and concrete block for pedestrian way. As a result of drop-boll test, FSAM showed higher impact energy absorption compared with other paving materials with the range of 18% to 43%. Impact energy absorption of FSAM increased with increasing test temperature from 5 to $40^{\circ}C$. The results of $M_R$ test at $5^{\circ}C$ showed that the flexibility of FSPA was increased further, because the $M_R$ value of the sand asphalt was measured to be 38% lower than normal dense-graded asphalt mixture (WC-1). Therefore, it was concluded that the FSAM could provide a high impact absorbing characteristics, which would improve walking quality of the pedestrian ways.

Evaluation of Rutting Resistance of Modified Asphalt Concrete by Accelerated Pavement Testing (포장가속시험을 통한 개질아스팔트 혼합물의 소성변형 저항성 평가 연구)

  • Kim, Jun Hyung;Suh, Young Chan;Kwon, Soo Ahn;Cho, Yong Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2D
    • /
    • pp.285-292
    • /
    • 2006
  • The objective of this study is to introduce the development of the first Korean full-scale APT(Accelerated Pavement Tester) and to compare the performances of general dense grade asphalt mixture and modified asphalt mixtures as the first running of the tester. The tests evaluated the rutting resistance for dense grade mixture and three different modified asphalt mixture under three different temperature conditions (25-30, 40, $50^{\circ}C$). The results of the testing were compared with the laboratory test results. Results of the tests indicated that the all the modified asphalt sections showed higher rutting resistance than the dense grade section. Especially, the difference was more noticeable at higher temperature condition. Additionally, $G^*/sin{\delta}$ is found out to be an important factor for permanent deformation prediction whereas the resilient modulus was not.

Study on mechanical properties of phosphate tailings modified clay as subgrade filler

  • Xiaoqing Zhao;Tianfeng Yang;Zhongling Zong;Teng Liang;Zeyu Shen;Jiawei Li;Gui Zhao
    • Geomechanics and Engineering
    • /
    • v.36 no.6
    • /
    • pp.619-629
    • /
    • 2024
  • To improve the utilization rate of phosphate tailings (PTs) and widen the sources of subgrade filler, the PTs is employed to modify clay, forming a PTs modified clay, applied in the subgrade. Accordingly, the environmental friendliness of PTs was investigated. Subsequently, an optimal proportion was determined through compaction and California Bearing Ratio (CBR) experiments. Afterward, the stability of mixture with the optimal proportion was further evaluated through the water stability and dry-wet stability experiments. Finally, via the gradation and microstructure experiments, the strength mechanism of PTs modified clay was analyzed. The results show that the PTs were classified in the non-hazardous solid wastes, belonging to Class A building materials. With the increase of PTs content and the decrease of clay content, the optimum water content and the swelling degree gradually decrease, while the maximum dry density and CBR first increase and then decrease, reaching their peak value at 50% PTs content, which is the optimal proportion. The resilient modulus of PTs modified clay at the optimal proportion reaches 110.2 MPa. The water stability coefficient becomes stable after soaking for 4 days, while the dry-wet stability coefficient decreases with the increase of cycles and tends to be stable after 8 cycles. Under the long-term action, the dry-wet change has a greater adverse impact than continuous soaking. The analysis demonstrates that the better strength mainly comes from the skeleton role of PTs and the cementation of clay. The systematic laboratory test results and economic analysis collectively provide data evidence for the advantages of PTs modified clay as a subgrade filler.

Laboratory Performance Evaluation of Chemcrete Modified Asphalt Mixtures (켐크리트 개질 아스팔트 혼합물의 실내 공용성 평가)

  • Park, Kyung-Il;Lee, Hyun-Jong;Lee, Kwang-Ho;Rhee, Suk-Keun
    • International Journal of Highway Engineering
    • /
    • v.3 no.3 s.9
    • /
    • pp.119-133
    • /
    • 2001
  • The stiffness of chemcrete modified asphalt mixtures increase rapidly with time in the presence f oxygen and high temperature, Sometimes the asphalt pavements that have chemcrete modified asphalt mixture applied on the surface none show premature cracking because of the excessive increase in the stiffness f the asphalt mixtures. To mitigate this premature cracking, the chemcrete modified mixtures have been used as a base course material. In this study, the performance of the chemcrete modified asphalt binder and mixtures are investigated through a course of various laboratory tests including dynamic shear rheometer and bending beam rheometer tests for binders and uniaxial tensile fatigue, wheel tracking, and moisture damage tests for the mixtures. And also the resilient modulus of the conventional and chemcrete modified mixtures are compared based on the test results conducted on the specimens obtained from various in-situ test sections. It can be concluded from the tests results that the chemcrete modified mixtures show better rutting resistance than conventional mixtures. The chemcrete modified mixtures may have low temperature cracking when it is applied in the cold region. The stiffness of chemcrete modified mixtures is approximately 50 percent higher than that of conventional mixtures more than two years after the chemcrete modified mixture was applied in the base course.

  • PDF

Condition Evaluation of the Pavement Foundations Using Multi-load Level FWD Deflections (다단계 하중 FWD를 사용한 도로기초 상태평가 연구)

  • Park, Hee-Mun;Kim, Richard Y.;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.261-271
    • /
    • 2003
  • A condition evaluation procedure for the pavement foundations using multi-load level Falling Weight Deflectometer(FWD) deflections is presented in this paper. A dynamic finite element program incorporating a stress-dependent material model, was used to generate the synthetic deflection database. Based on this synthetic database, the relationships between surface deflections and critical responses, such as stresses and strains in base and subgrade layers, have been established. FWD deflection data, Dynamic Cone Penetrometer(UP) data, and repeated load resilient modulus testing results used in developing this procedure were collected from the Long Term Pavement Performance (LTPP) and North Carolina Department of Transportation (NCDOT) database. Research effort focused on investigation of the effect of the FWD load level on the condition evaluation procedures. The results indicate that the proposed procedure can estimate the pavement foundation conditions. It is also found that structurally adjusted Base Damage Index (BDI) and Base Curvature Index (BCI) are good indicators for the prediction of stiffness characteristics of aggregate base and subgrade respectively. A FWD test with a load of 66.7 kN or less does not improve the accuracy of this procedure. Results from the study for the nonlinear behavior of a pavement foundations indicate that the deflection ratio obtained from multi-load level deflections can predict the type and quality of the pavement foundation materials.

A Study on Mechanical Characteristics of Fiber Modified Emulsified Asphalt Mixture as Environmentally-Friend Paving Material (섬유보강 친환경 상온아스팔트 혼합물의 역학적 특성에 관한 연구)

  • Rhee Suk-Keun;Park Kyung-Won
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.23-30
    • /
    • 2006
  • Emulsified Asphalt Mixture(EAM) is more environmentally-friendly and cost-effective than typical Hot Mix Asphalt (HMA) because EAM does not produce carcinogenic substances, e.g., naphtha, kerosene, during the both of manufacturing and roadway construction process. Also, it does not require heating the aggregates and asphalt binder. However, EAM has some disadvantages. Generally EAM has a less load bearing capacity and more moisture susceptibility than conventional HMA. The study evaluated a Fiber modified EAM (FEAM) to increase load bearing capacity and to decrease moisture susceptibility of EAM. Modified Marshall mix design was developed to find Optimum Emulsion Contents (OEC), Optimum Water Contents (OWC), and Optimum Fiber Contents (OFC). A series of test were performed on the fabricated specimen with OBC, OWC, and OFC. Tests include Marshall Stability, Indirect Tensile Strength, and Resilient modulus test. Comparison analyses were performed among EAM, Fiber modified EAM (FEAM), and typical HMA to verify the applicability of EAM and FEAM in the field. Test results indicated that both of EAM and FEAM have an enough capability to resist medium traffic volume based on the Marshall mix design criteria. Also the study found that fiber modification is effective to increase the load bearing capacity and moisture damage resistance of EAM.

  • PDF

A Methodology for Quality Control of Railroad Trackbed Fills Using Compressional Wave Velocities : II. Verification of Applicability (압축파 속도를 이용한 철도 토공노반의 품질관리 방안 : II. 적용성 검증)

  • Park, Chul-Soo;Mok, Young-Jin;Hwang, Seon-Keun;Park, In-Beom
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.9
    • /
    • pp.57-66
    • /
    • 2009
  • In the preliminary investigation (Park et al., 2009), the use of compressional wave velocity and its measurement techniques were proposed as a new quality control measure for trackbed fills. The methodology follows exactly the same procedure as the density control, except the density being replaced by the compressional wave velocity involving consistently with resilient modulus of design stage. The specifications for the control also include field compaction water content of optimum moisture content ${\pm}2%$ as well as the compressional wave velocity. In this sequel paper, crosshole and resonant column tests were performed as well direct-arrival method and laboratory compressional wave measurements to verify the practical applicability of a methodology far the new quality control procedure based upon compressional wave velocity. The stress-modified crosshole results reasonably well agree with the direct-arrival values, and the resonant column test results also agree well with the field crosshole results. The compressional wave velocity turned out to be an excellent control measure for trackbed fills both in the theoretical and practical point of view.