• Title/Summary/Keyword: Residuals

Search Result 620, Processing Time 0.023 seconds

Analysis of Subsurface Geological Structures and Geohazard Pertinent to Fault-damage in the Busan Metropolitan City (부산시 도심지의 지하 지질구조와 단층손상과 관련된 지질위험도 분석)

  • Son, Moon;Lee, Son-Kap;Kim, Jong-Sun;Kim, In-Soo;Lee, Kun
    • Economic and Environmental Geology
    • /
    • v.40 no.1 s.182
    • /
    • pp.87-101
    • /
    • 2007
  • A variety of informations obtained from satellite image, digital elevation relief map (DEM), borehole logging, televiewer, geophysical prospecting, etc were synthetically analyzed to investigate subsurface geological and structural characteristics and to evaluate geohazard pertinent to fault-damage in the Busan metropolitan city. It is revealed that the geology is composed of the Cretaceous andesitic$\sim$dacitic volcanics, gabbro, and granitoid and that at least three major faults including the Dongrae fault are developed in the study area. Based on characteristics of topography, fault-fractured zone, and isobath maps of the Quaternary sediments and weathered residuals of the basement, the Dongrae fault is decreased in its width and fracturing intensity of damaged zone from south toward north, and the fault is segmented around the area between the Seomyeon and Yangieong junctions. Meanwhile, we drew a geohazard sectional map using the five major parameters that significantly suggest damage intensity of basement by fault, i.e. distance from fault core, TCR, RQD, uniaxial rock strength, and seismic velocity of S wave. The map is evaluated as a suitable method to express the geological and structural characteristics and fault-damaged intensity of basement in the study area. It is, thus, concluded that the proposed method can contribute to complement and amplify the capability of the present evaluation system of rock mass.

Characterizations of Shell and Mantle Edge Pigmentation of a Pacific Oyster, Crassostrea gigas, in Korean Peninsula

  • Kang, Jung-Ha;Kang, Hyun-Sook;Lee, Jung-Mee;An, Chel-Min;Kim, Sung-Youn;Lee, Yun-Mi;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.12
    • /
    • pp.1659-1664
    • /
    • 2013
  • The objectives of this study were to investigate color patterns of shell and mantle edge pigmentation of a Pacific oyster, C. gigas, and to estimate variance components of the two colors. A sample of 240 F0 oysters was collected from six aquaculture farms in Tongyeong, Korea to measure shell color and mantle edge pigmentation. Among the F0s, male and female individuals with black (white) shell and black (white) mantle edge were selected and mated to generate three F1 full-sib black (white) cross families (N = 265). Two and four F2 cross families (N = 286) were also produced from black and white F1 selected individuals, respectively. Variance component estimates due to residuals and families within color were obtained using SAS PROC VARCOMP procedures to estimate heritability of shell and mantle edge pigmentation. In the F0 generation, about 29% (11%) had black (white) color for both shell and mantle edge. However, in the F1 and F2 black (white) cross families, 75% (67%) and 100% (100%) of oysters had black (white) shell colors, and 59% (23%) and 79% (55%) had black (white) mantle edge, respectively. Spearman correlation coefficients between shell and mantle edge color were 0.25, 0.74, and 0.92 in F0, F1, and F2 generations, respectively, indicating that, with generations of selection process, an individual with black (white) shell color is more likely to have black (white) mantle edge pigmentation. This suggests that shell color could be a good indicator trait for mantle edge pigmentation if selection of both the colors is implemented for a couple of generations. Estimates of heritability were 0.41 and 0.77 for shell color and 0.27 and 0.08 for mantle edge pigmentation in the F1 and F2 generations, respectively, indicating that, in general, significant proportions of phenotypic variations for the shell and mantle edge colors are explained by genetic variations between individuals. These results suggest that the two color traits are inheritable and correlated, enabling effective selection on shell and mantle edge color.

Non-stationary Rainfall Frequency Analysis Based on Residual Analysis (잔차시계열 분석을 통한 비정상성 강우빈도해석)

  • Jang, Sun-Woo;Seo, Lynn;Kim, Tae-Woong;Ahn, Jae-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5B
    • /
    • pp.449-457
    • /
    • 2011
  • Recently, increasing heavy rainfalls due to climate change and/or variability result in hydro-climatic disasters being accelerated. To cope with the extreme rainfall events in the future, hydrologic frequency analysis is usually used to estimate design rainfalls in a design target year. The rainfall data series applied to the hydrologic frequency analysis is assumed to be stationary. However, recent observations indicate that the data series might not preserve the statistical properties of rainfall in the future. This study incorporated the residual analysis and the hydrologic frequency analysis to estimate design rainfalls in a design target year considering the non-stationarity of rainfall. The residual time series were generated using a linear regression line constructed from the observations. After finding the proper probability density function for the residuals, considering the increasing or decreasing trend, rainfalls quantiles were estimated corresponding to specific design return periods in a design target year. The results from applying the method to 14 gauging stations indicate that the proposed method provides appropriate design rainfalls and reduces the prediction errors compared with the conventional rainfall frequency analysis which assumes that the rainfall data are stationary.

Assessment of LODs and Positional Accuracy for 3D Model based on UAV Images (무인항공영상 기반 3D 모델의 세밀도와 위치정확도 평가)

  • Lee, Jae One;Kim, Doo Pyo;Sung, Sang Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.197-205
    • /
    • 2020
  • Compared to aerial photogrammetry, UAV photogrammetry has advantages in acquiring and utilizing high-resolution images more quickly. The production of 3D models using UAV photogrammetry has become an important issue at a time when the applications of 3D spatial information are proliferating. Therefore, this study assessed the feasibility of utilizing 3D models produced by UAV photogrammetry through quantitative and qualitative analyses. The qualitative analysis was performed in accordance with the LODs (Level of Details) specified in the 3D Land Spatial Information Construction Regulation. The results showed that the features on planes have a high LoD while features with elevation differences have a low LoD due to the occlusion area and parallax. Quantitative analysis was performed using the 3D coordinates obtained from the CPs (Checkpoints) and edges of nearby structures. The mean errors for residuals at CPs were 0.042 m to 0.059 m in the horizontal and 0.050 m to 0.161 m in the vertical coordinates while the mean errors in the structure's edges were 0.068 m and 0.071 m in horizontal and vertical coordinates, respectively. Therefore, this study confirmed the potential of 3D models from UAV photogrammetry for analyzing the digital twin and slope as well as BIM (Building Information Modeling).

Photo- and Sonic Degradation of Endosulfans(α, β, and sulfate) in Aqueous Solution (엔도설판류의 광 및 초음파분해)

  • Kwon, Sung Hyun;Kim, Jong Hyang;Cho, Daechul
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.460-465
    • /
    • 2007
  • Endosulfan-${\alpha}$ endosulfan-${\beta}$ and endosulfan-sulfate, which are classified as pesticides, were degraded by use of UV energy and ultrasonic irradiation. The degradation residuals were analysed by gas chromatography with an electron capture detector and TOC (total oragnic carbon) analysis. The reactions were conducted in a quartz annular reactor equipped with a low pressure mercury multilamp (8Wx2) and a sonic generator. All the aqueous solutions were concentrated as 10 mg/L initially. Endosulfans were degraded each to result in 48.2% (${\alpha}$), 50.0% (${\beta}$) and 76.5% (sulfate) of removal efficiency by UV energy, and 66.9% (${\alpha}$), 55.8% (${\beta}$) and 72.7% (sulfate) by ultrasonic irradiation, respectively. In contrast to the results of the single-component solutions, degradation of the endosulfan-sulfate was greatly suppressed to result in the lowest degradation rate and removal efficiency in the three-component solutions. This finding suggests that there should be a reversible reaction with a substantially low equilibrium constant between endosulfan-${\alpha}$ or -${\beta}$ and -sulfate in the coexistence of the three endosulfans. TOC data showed the endosulfans were decomposed by 20%~40% toward complete mineralization, producing a quantity of intermediates induced by the radical reactions. We found that all the decay reactions considered in this study nicely fell into pseudo first-order rate.

Evaluation of Probability Rainfalls Estimated from Non-Stationary Rainfall Frequency Analysis (비정상성 강우빈도해석법에 의한 확률강우량의 평가)

  • Lee, Chang-Hwan;Ahn, Jae-Hyun;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.2
    • /
    • pp.187-199
    • /
    • 2010
  • This study evaluated applicability and confidence of probability rainfalls estimated by the non-stationary rainfall frequency analysis which was recently developed. Using rainfall data at 4 sites which have an obvious increasing trend in observations, we estimated 3 type probability rainfalls; probability rainfalls from stationary rainfall frequency analysis using data from 1973-1997, probability rainfalls from stationary rainfall frequency analysis using data from 1973-2006, probability rainfalls from non-stationary rainfall frequency analysis assuming that the current year is 1997 and the target year is 2006. Based on the comparison of residuals from 3 probability rainfalls, the non-stationary rainfall frequency analysis provided more effective and well-directed estimates of probability rainfalls in the target year. Using Bootstrap resampling, this study also evaluated the parameter estimation methods for the non-stationary rainfall frequency analysis based on confidence intervals. The confidence interval length estimated by the maximum likelihood estimation (MLE) is narrower than the probability weighted moments (PWM). The results indicated that MLE provides more proper confidence than PWM for non-stationary probability rainfalls.

Optimization of Ammonia Percolation Process for Ethanol Production from Miscanthus Sinensis (억새를 이용한 바이오 에탄올 생산을 위한 암모니아 침출 공정 최적화)

  • Kim, Kyoung-Seob;Kim, Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.48 no.6
    • /
    • pp.704-711
    • /
    • 2010
  • Lignocellulose ($2^{nd}$ generation) is difficult to hydrolyze due to the presence of lignin and the technology developed for cellulose fermentation to ethanol is not yet economically viable. However, recent advances in the extremely new field of biotechnology for the ethanol production are making it possible to use of agriculture residuals and nonedible crops biomass, e.q., rice straw and miscanthus sinensis, because of their several superior aspects as agriculture residual and nonedible crops biomass; low lignin, high contents of carbohydrates. In this article, as the basic study of AP(Ammonia Percolation), the properties and the optium conditions of process were established, and then the overall efficiency of AP was investigated. The important independent variables for AP process were selected as ammonia concentration, reaction temperature, and reaction time. The percolation condition for maximizing the content of cellulose, the enzymatic digestibility, and the lignin removal was optimized using RSM(Response Surface Methodology). The determined optimum condition is ammonia concentration; 11.27%, reaction temperature; $157.75^{\circ}C$, and reaction time; 10.01 min. The satisfying results were obtained under this optimized condition, that is, the results are as follows: cellulose content(relative); 39.98%, lignin content(relative); 8.01%, and enzymatic digestibility; 85.89%.

BDS Statistic: Applications to Hydrologic Data (BDS 통계: 수문자료에의 응용)

  • Kim, Hyeong-Su;Gang, Du-Seon;Kim, Jong-U;Kim, Jung-Hun
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.6
    • /
    • pp.769-777
    • /
    • 1998
  • In this study, various time series are analyzed to check nonlinearities of the data. The nonlinearity of a system can be investigated by testing the randomness of the time series data. To test the randomness, four nonparametric test statistics and a new test statistic, called the BDS statistic are used and the results and the results are compared. The Brock, Dechert, and Scheinkman (BDS) statistic is originated from the statistical properties of the correlation integral which is used for searching for chaos and has been shown very effective in distinguishing nonlinear structures in dynamic systems from random structures. As a result of application to linear and nonlinear models which are well known, the BDS statistic is found to be more effective than nonparametric test statistics in identifying nonlinear structure in the time series. Hydrologic time series data are fitted to ARMA type models and the statistics are applied to the residuals. The results show that the BDS statistic can distinguish chaotic nonlinearity from randomness and that the BDS statistic can also be used for verifying the validity of the fitted model.

  • PDF

A Study on Fault Classification by EEMD Application of Gear Transmission Error (전달오차의 EEMD적용을 통한 기어 결함분류연구)

  • Park, Sungho;Choi, Joo-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.169-177
    • /
    • 2017
  • In this paper, classification of spall and crack faults of gear teeth is studied by applying the ensemble empirical mode decomposition(EEMD) for the gear transmission error(TE). Finite element models of the gears with the two faults are built, and TE is obtained by simulation of the gears under loaded contact. EEMD is applied to the residuals of the TE which are the difference between the normal and faulty signal. From the result, the difference of spall and crack faults are clearly identified by the intrinsic mode functions(IMF). A simple test bed is installed to illustrate the approach, which consists of motor, brake and a pair of spur gears. Two gears are employed to obtain the TE for the normal, spalled, and cracked gears, and the type of the faults are separated by the same EEMD application process. In order to quantify the results, crest factors are applied to each IMF. Characteristics of spall and crack are well represented by the crest factors of the first and the third IMF, which are used as the feature signals. The classification is carried out using the Bayes decision theory using the feature signals acquired through the experiments.

Use of Hydrogen Peroxide with Ozone to Simultaneously Reduce MIB and Quench Ozone Residual in Existing Water Treatment Plants Sourcing Water from the Han River (한강을 원수로 하는 오존/과산화수소 고도정수처리공정에서의 MIB제거 및 잔류오존 농도에 관한 연구)

  • McAdams, Stephen R.;Koo, Bon Jin;Jang, Myung Hoon;Lee, Sung Kyoo
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.5
    • /
    • pp.704-716
    • /
    • 2012
  • This paper provides a detailed account of pilot testing conducted at South Lake Tahoe (California), the Ddukdo (Seoul) water treatment plant (WTP) and the Bokjung (Seongnam) WTP between February, 2010, and February, 2012. The objectives were first, to characterize the reactions of ozone with hydrogen peroxide (Peroxone) for Han River water following sand filtration, second to determine empirical ozone and hydrogen peroxide doses to remove a taste-and-odor surrogate 2-methylisoborneol (MIB) using an advanced oxidation process (AOP) configuration and third, to determine the optimum dosing configuration to reduce residual ozone to a safe level at the exit of the process. The testing was performed in a real-time plant environment at both low- and high seasonal water temperatures. Experimental results including ozone decomposition rates were dependent on temperature and pH, consistent with data reported by other researchers. MIB in post-sand-filtration water was spiked to 40-50 ng/L, and in all cases, it was reduced to below the specified target level (7 ng/liter) and typically non-detect (ND). It was demonstrated that Peroxone could achieve both MIB removal and low effluent ozone residual at ozone+hydrogen peroxide doses less than those for ozone alone. An empirical predictive model, suitable for use by design engineers and operating personnel and for incorporation in plant control systems was developed. Due to a significant reduction in the ozone reaction/decomposition at low winter temperatures, results demonstrate the hydrogen peroxide can be "pre-conditioned" in order to increase initial reaction rates and achieve lower ozone residuals. Results also indicate the method, location and composition of hydrogen peroxide injection is critical to successful implementation of Peroxone without using excessive chemicals or degrading performance.