• Title/Summary/Keyword: Residual water level

Search Result 163, Processing Time 0.026 seconds

A Study on Formation Pattern of DBPs by Disinfection of Drinking Raw Water (음용 원수의 염소소독에 의한 소독부산물 생성패턴에 관한 연구)

  • Lee, Kang Jin;Hong, Jee Eun;Pyo, Heesoo;Park, Song-Ja;Yoo, Je Kang;Lee, Dae Woon
    • Analytical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.249-260
    • /
    • 2003
  • The disinfection of drinking water to control microbial contaminants results in the formation of secondary chemical contaminants, DBPs (disinfection by-products). It was studied the formation pattern of DBPs in drinking raw water after hypochlorite, chlorine disinfectant, was added in this study. It was determined TOC (total organic carbon), residual chlorine, turbidity and DBPs in raw water from Han-river during 1~14 days. Total DBPs was $101.3ng/m{\ell}$ (789.6 nM) after 7days and THMs (trihalomethanes) are the dominant portion of 69%. HAAs (haloacetic acids) and chloral hydrate were determined 19% and 10% respectively, and HANs (haloacetonitriles), HKs (haloketones) and chloropicrin were analyzed in trace level. Chloroform occupied about 89% in total THMs in concentration of $61.5ng/m{\ell}$, 95% of HANs was DCAN (dichloroacetonitrile) in $0.72ng/m{\ell}$, 50% of HAAs was TCAA (trichloroacetic acid). On the study of relationship in formation among the DBPs, HANs forms with THMs competitively to the point of the concentration of $40ng/m{\ell}$ of THMs. For HAAs, it did not show the prominent tendency. But it was observed that the compounds of large oxidation state are formed at first, and becomes to the compounds of low oxidation states.

Residual Change of Deltamethrin in Stream Water after Spaying for Pest Control of Stream Levee (하천둔치에 방역용 Deltamethrin 살포 시 하천수 중 잔류변화)

  • Han, Ye-Hun;Park, Jae-Hun;Lim, Jong-Sung;Lee, Yong-Ju;Lee, Sung-Kyu;Lee, Kyu-Seung
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.1
    • /
    • pp.78-83
    • /
    • 2013
  • BACKGROUND: This study was performed to investigate the change of deltamethrin residue after spraying for control of hygienic insects in bush of levee at Bansuk-dong stream (A) and Juk-dong ditch (B) in Yuseong, Daejeon. The drop concentrations and disappearance of deltamethrin residue in stream water were determined to evaluate the toxic effects of stream ecosystem. METHODS AND RESULTS: Water samples were collected at 7 points including 0, 5, 10, 20, 40, 70 and 100 m downstream from the deltamethrin spraying point. Water sample was partitioned into dichloromethane, and was determined with GC/${\mu}$-ECD. Limit of Quantitation of deltamethrin was 0.04 ${\mu}g/L$. Recoveries of deltamethrin at two fortification levels of 0.4 and 2.0 ${\mu}g/L$ were $91.57{\pm}3.13%$(n=3) and $94.40{\pm}4.59%$(n=3) in A stream, and $88.24{\pm}3.33%$(n=3) and $85.20{\pm}3.73%$(n=3) in B stream, respectively. Residue of A stream were from <0.04 ${\mu}g/L$ to 0.48 ${\mu}g/L$ and B stream were from 0.08 ${\mu}g/L$ to 14.95 ${\mu}g/L$ under practice application condition. And residues were from <0.04 ${\mu}g/L$ to 0.2 ${\mu}g/L$ in A stream treated deltamethrin with 1.0 mg level at the upper region. CONCLUSION(S): Practice application of deltamethrin for the pest control of waterside was not much shown toxic effect to ecosystem of stream.

Characteristics of Phosphorus Accumulation in Rotation System of Plastic Film House and Paddy Soils (시설재배지에서 윤답전환체계가 인산분포에 미치는 영향)

  • Lee, Yong-Bok;Lee, In-Bog;Hwang, Jun-Young;Lee, Kyung-Dong;Kim, Pil-Joo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.1
    • /
    • pp.47-58
    • /
    • 2002
  • Much of the plastic film house soils in the southern part of the Korean peninsula are managed using a upland-paddy rotation culture system (hereafter, RS) to prevent salt accumulation in soil. However, information on the effects of RS on soil properties and environmental conservation is limited. In order to determine the effects of RS on soil properties, 22 fields under RS and 20 fields under a non-rotation system (hereafter, NRS) in plastic film houses were selected in Chinju, in southern Korea, and the P distribution characteristics were investigated, including the chemical properties. The RS contributed to the removal of water-soluble salts in the surface layer and to the redistribution of organic matter evenly in the soil profile. In the AP horizon, available phosphorus levels were $1,611mg\;kg^{-1}$ in RS and $1,789mg\;kg^{-1}$ in NRS, which markedly exceeds the optimum range for plant cultivation. Total P was lower in RS (average $4,593mg\;kg^{-1}$) than in NRS (average $5,440mg\;kg^{-1}$) and this decrease was taken to be an effect of RS. Inorganic P was the predominant form of P in both systems, followed by organic P and residual P. A soil profile showed that total and inorganic P concentrations decreased with depth in both systems. However, organic P increased withdepth in RS, which was in contrast to that noted in NRS. The increase in organic P with depth in RS implied that organically rather than inorganically derived phosphate moved through the soil. The concentrations of water-soluble P, Ca-P and Al-P were higher in NRS than in RS soil profiles, but the Fe-P concentration was higher in RS than in NRS, which might be affected by the anaerobic conditions found in paddy soils. In both systems, the Al-P form of extractable P predominated in the surface layer, followed by Ca-P, Fe-P and water-soluble P. With increasing depth, the composition rate of Ca-P to extractable P decreased to less than 10% in the 60-70cm depth, as Fe-P dominated at this level. The content of water-soluble P, potentially the main source of eutrophication, was higher in NRS than in RS. These results indicated that the RS used in plastic film houses contributed to the removal of water-soluble salts but only slightly decreased the phosphate concentration.

Regional Realtime Ocean Tide and Storm-surge Simulation for the South China Sea (남중국해 지역 실시간 해양 조석 및 폭풍해일 시뮬레이션)

  • Kim, Kyeong Ok;Choi, Byung Ho;Lee, Han Soo;Yuk, Jin-Hee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.2
    • /
    • pp.69-83
    • /
    • 2018
  • The South China Sea (SCS) is a typical marginal sea characterized with the deep basin, shelf break, shallow shelf, many straits, and complex bathymetry. This study investigated the tidal characteristics and propagation, and reproduced typhoon-induced storm surge in this region using the regional real-time tide-surge model, which was based on the unstructured grid, resolving in detail the region of interest and forced by tide at the open boundary and by wind and air pressure at the surface. Typhoon Haiyan, which occurred in 2013 and caused great damage in the Philippines, was chosen as a case study to simulate typhoon's impact. Amplitudes and phases of four major constituents were reproduced reasonably in general, and the tidal distributions of four constituents were similar to the previous studies. The modelled tide seemed to be within the acceptable levels, considering it was difficult to reproduce the tide in this region based on the previous studies. The free oscillation experiment results described well the feature of tide that the diurnal tide is prevailing in the SCS. The tidal residual current and total energy dissipation were discussed to understand the tidal and sedimentary environments. The storm-surge caused by typhoon Haiyan was reasonably simulated using this modeling system. This study established the regional real-time barotropic tide/water level prediction system for the South China Sea including the seas around the Philippines through the validation of the model and the understanding of tidal characteristics.

Estimation on Unsaturated Hydraulic Conductivity Function of Jumoonjin Sand for Various Relative Densities (주문진 표준사의 상대밀도에 따른 불포화 투수계수함수 산정)

  • Song, Young-Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2369-2379
    • /
    • 2013
  • The Soil-Water Characteristics Curve (SWCC) is affected by the initial density of soil under unsaturated condition. Also, the characteristic of hydraulic conductivity is changed by the initial density of soil. To study the effect of initial density of unsaturated soil, SWCC and the Hydraulic Conductivity Function (HCF) of Jumoonjin sand with various relative densities, 40%, 60% and 75% were measured in both drying and wetting processes. As the results of SWCC estimated by van Genuchten (1980) model, the parameter related to Air Entry Value(AEV), ${\alpha}$ in the wetting process is larger than that in drying process, but the parameters related to the SWCC slope, n and the residual water content, m are larger than those in wetting process. The AEV is increased or Water Entry Value (WEV) is decreased with increasing the relative density of sand. The AEV is larger than the WEV at the same relative density of sand. As the results of HCF estimated by van Genuchten (1980) model which is one of the parameter estimation methods, the unsaturated hydraulic conductivity maintained at a saturated one in the low level of matric suctions and then suddenly decreased just before the AEV or the WEV. The saturated hydraulic conductivity in drying process is larger than that in wetting process. The saturated hydraulic conductivity is decreased with increasing the relative density of sand in both drying and wetting processes. Also, the hysteresis in unsaturated HCFs between drying and wetting process was occurred like the hysteresis in SWCCs. According to the test results, the AEV on SWCC is decreased and the saturated hydraulic conductivity is increased with increasing the initial density. It means that SWCC and HCF are affected by the initial density in the unsaturated soil.

Numerical Modeling of Tide and Tidal Current in the Kangjin Bay, South Sea, Korea

  • Ro, Young-Jae;Jun, Woong-Sik;Jung, Kwang-Young;Eom, Hyun-Min
    • Ocean Science Journal
    • /
    • v.42 no.3
    • /
    • pp.153-163
    • /
    • 2007
  • This study is based on a series of numerical modeling experiments to understand the tidal circulation in the Kangjin Bay (KB). The tidal circulation in the KB is mostly controlled by the inflow from two channels, Noryang and Daebang which introduce the open ocean water into the northern part of the KB with relatively strong tidal current, while in the southern part of the KB, shallowest region of the entire study area, weak tidal current prevails. The model prediction of the sea level agrees with observed records at skill scores exceeding 90 % in terms of the four major tidal constituents (M2, S2, K1, O1). However, the skill scores for the tidal current show relatively lower values of 87, 99, 59, 23 for the semi-major axes of the constituents, respectively. The tidal ellipse parameters in the KB are such that the semi-major axes of the ellipse for M2 range from 1.7 to 38.5 cm/s and those for S2 range from 0.5 to 14.4 cm/s. The orientations of the major-axes show parallel with the local isobath. The eccentricity values at various grid points of ellipses for M2 and S2 are very low with 0.2 and 0.06 on the average, respectively illustrating that the tidal current in the KB is strongly rectilinear. The magnitude of the tidal residual current speed in the KB is on the order of a few cm/s and its distribution pattern is very complex. One of the most prominent features is found to be the counter-clockwise eddy recirculation cell at the mouth of the Daebang Channel.

Mechanism of shear strength deterioration of loess during freeze-thaw cycling

  • Xu, Jian;Wang, Zhangquan;Ren, Jianwei;Yuan, Jun
    • Geomechanics and Engineering
    • /
    • v.14 no.4
    • /
    • pp.307-314
    • /
    • 2018
  • Strength of loess that experienced cyclic freeze and thaw is of great significance for evaluating stability of slopes and foundations in loess regions. This paper takes the frequently encountered loess in the Northwestern China as the study object and carried out three kinds of laboratory tests including freeze-thaw test, direct shear test and SEM test to investigate the strength behaviors of loess after cyclic freeze and thaw, and the correlation with meso-level changes in soil structure. Results show that for loess specimens at four dry densities, the cohesion decreases with freeze-thaw cycles until a residual value is reached and thus an exponential equation is proposed. Besides, little change in the angle of internal friction was observed as freeze-thaw proceeds. This may depend on the varying of soil structure, based on which a clue can be found from the surface morphology and mesoscopic scanning of loess specimens. Clearly we observed significant changes in surface morphology of loess and it tends to aggravate at higher water contents or more cycles of freeze and thaw. Moreover, freeze-thaw cycling leads to obvious changes in the meso-structure of loess including lowering the particle aggregates and increasing both the proportion of fine particles and porosity area ratio. A damage variable dependent on the ratio of porosity area is introduced based on the continuum damage mechanics and its correlation with cohesion is discussed.

CONCEPTUAL DESIGN OF THE SODIUM-COOLED FAST REACTOR KALIMER-600

  • Hahn, Do-Hee;Kim, Yeong-Il;Lee, Chan-Bock;Kim, Seong-O;Lee, Jae-Han;Lee, Yong-Bum;Kim, Byung-Ho;Jeong, Hae-Yong
    • Nuclear Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.193-206
    • /
    • 2007
  • The Korea Atomic Energy Research Institute has developed an advanced fast reactor concept, KALIMER-600, which satisfies the Generation IV reactor design goals of sustainability, economics, safety, and proliferation resistance. The concept enables an efficient utilization of uranium resources and a reduction of the radioactive waste. The core design has been developed with a strong emphasis on proliferation resistance by adopting a single enrichment fuel without blanket assemblies. In addition, a passive residual heat removal system, shortened intermediate heat-transport system piping and seismic isolation have been realized in the reactor system design as enhancements to its safety and economics. The inherent safety characteristics of the KALIMER-600 design have been confirmed by a safety analysis of its bounding events. Research on important thermal-hydraulic phenomena and sensing technologies were performed to support the design study. The integrity of the reactor head against creep fatigue was confirmed using a CFD method, and a model for density-wave instability in a helical-coiled steam generator was developed. Gas entrainment on an agitating pool surface was investigated and an experimental correlation on a critical entrainment condition was obtained. An experimental study on sodium-water reactions was also performed to validate the developed SELPSTA code, which predicts the data accurately. An acoustic leak detection method utilizing a neural network and signal processing units were developed and applied successfully for the detection of a signal up to a noise level of -20 dB. Waveguide sensor visualization technology is being developed to inspect the reactor internals and fuel subassemblies. These research and developmental efforts contribute significantly to enhance the safety, economics, and efficiency of the KALIMER-600 design concept.

Comparison of Residue Patterns for Systemic and Non-systemic Pesticides in Strawberry (딸기 중 침투성 및 비침투성 농약에 따른 잔류특성 연구)

  • You, Jung-Sun;Gwak, Hye-Min;Chang, Hee-Ra
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.4
    • /
    • pp.305-311
    • /
    • 2020
  • BACKGROUND: The healthy food trend has encouraged the consumption of natural products, including berries. This trend is expected to increase the strawberry consumption. There has been a concern about the exposure of pesticides approved for use on strawberry. In this study, the dissipation patterns of systemic and non-systemic pesticides were evaluated in strawberry under plastic-covered greenhouse conditions. METHODS AND RESULTS: Cyflumetofen and dimethomorph were applied on strawberry in the critical GAP (Good Agricultural Practices). Strawberries were harvested at 0, 1, 2, 3, 5, 7 and 10 days after final application of the pesticides. The analyses of the residual pesticides were performed by HPLC-DAD with C18 column. The limits of quantitation (LOQ) of cyflumetofen and dimethomorph were 0.04 and 0.02 mg/kg, respectively. The recovery of cyflumetofen and dimethomorph were 88.1 ~ 103.3% and 79.0 ~ 110.2% for the spiked two levels (LOQ and 10LOQ), respectively. The biological half-lives of cyflumetofen and dimethomorph werer 7.5 and 8.9 days, respectively. The dissipation rates in strawberry were calculated by the statistics method at a 95% confidence level. The distribution showed that pesticides with low log Pow were indicated by the decreased dissipation rate and pesticides with similar log Pow and low solubility also showed the decreased dissipation rate. CONCLUSION: The residues of cyflumetofen and dimethomorph in strawberry at time 0 after the final application were below the established MRL in Korea. The dissipation behavior of systemic and non-systemic pesticides in strawberry is affected by their log Pow and water solubility values.

Temporal Patterns of Pesticide Residues in the Keum, Mangyung and Dongjin Rivers in 2002 (2002년 금강, 만경-동진강 하천수 중 잔류농약의 연간 검출 양상)

  • Kim, Chan-sub;Lee, Hee-Dong;Ihm, Yang-Bin;Son, Kyeong-Ae
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.4
    • /
    • pp.230-240
    • /
    • 2017
  • BACKGROUND: To evaluate residues of environmentally concerned pesticides in water system, this monitoring was conducted over three rivers. The residual characteristics and discharging condition of these residues on water system was investigated. METHODS AND RESULTS: Total twenty nine sampling sites were selected through main streams and branch streams of Keum, Mangyung and Dongjin rivers, and the water samples from them were regularly collected one month interval, especially biweekly from May to August in 2002. Of the pesticides monitored, six fungicides which include hexaconazole, isoprothiolane and iprobenfos were detected with frequencies of 0.3-50.9% and in their residue level of $0.1-4.7{\mu}g/L$. Sixteen insecticides which include nine organophosphoruses, three carbamates, endosulfan, cypermethrin, buprofezin and fipronil were detected with frequencies of 0.3-32.5% and in their residue level of $0.01-2.8{\mu}g/L$. Nine herbicides which include alachlor molinate, anilofos, butachlor, dimepiperate, metolachlor, oxadiazon, pretilachlor and thiobencarb were detected with frequencies of 0.8-22.9% and in their residue level of $0.01-9.07{\mu}g/L$. CONCLUSION: Detection frequencies and residue levels of insecticides and herbicides were the highest in waters sampled in May and June. Almost pesticides detected were for the paddy rice and their residue levels were very low to compare with standard values.