• 제목/요약/키워드: Residual strain

검색결과 638건 처리시간 0.023초

복합판재의 파단 변형률 불확실성을 고려한 탄 관통 잔류속도에 대한 시험 및 수치해석 (Test and Numerical Analysis for Penetration Residual Velocity of Bullet Considering Failure Strain Uncertainty of Composite Plates)

  • 차명석;이민형
    • 대한기계학회논문집A
    • /
    • 제40권3호
    • /
    • pp.281-288
    • /
    • 2016
  • 복합재는 재료 불균질성에 의해 고속 충돌 시 방호성능 자료가 산포한다. 본 연구에서는 다수의 충돌시험으로 복합판재 잔류속도 산포를 확보하고 수치해석으로 예측하는 방법을 정립하였다. 먼저 10개의 동일 시편으로 인장시험을 수행하여 파단변형률 산포를 얻었다. 같은 재료로 제작된 4ply([0/90]s)와 8ply([0/90/0/90]s) GFRP(Glass Fiber Reinforced Plastic) 복합판재에 FSP(Fragment Simulating Projectile) 고속 충돌시험을 동일 조건에서 다수 수행하여 잔류속도 산포를 얻었다. 인장시험에서 얻어진 파단 변형률 분포를 이용하여 수치해석을 수행하였다. 충돌속도는 4ply와 8ply 각각 411.7m/s와 592.5m/s이다. 시험 결과와 비교하여 적절한 잔류속도의 산포를 예측할 수 있었다. 추가적으로 복합판재의 경우 Solid요소 대비 Layered Solid요소로 모델링하면 계산시간이 감소되었다.

Analysis of Post-Weld Deformation at the Heat-Affected Zone Using External Forces Based on the Inherent Strain

  • Ha, Yun-Sok;Jang, Chang-Doo;Kim, Jong-Tae;Mun, Hyung-Suk
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권4호
    • /
    • pp.56-62
    • /
    • 2007
  • An analytical method to predict the post-weld deformation at the heat-affected zone (HAZ) is presented in this paper. The method was based on the assumption that the post-weld deformation is caused by external forces resulting from the inherent strain, which is defined as the irrecoverable strain after removing structural restraints and loadings. In general, the equivalent loading method can be used to analyze distortions in welding areas because it is efficient and effective. However, if additional loads are applied after welding, it is difficult to determine the final strain on a welded structure. To determine the final strain of a welded structure at the HAZ more accurately, we developed a modified equivalent loading method based on the inherent strain that incorporated hardening effects. The proposed method was applied to calculate the residual stress at the HAZ. Experiments were also conducted on welded plates to evaluate the validity of the proposed method.

Experimental and numerical investigations on the ratcheting characteristics of cylindrical shell under cyclic axial loading

  • Shariati, M.;Hatami, H.;Torabi, H.;Epakchi, H.R.
    • Structural Engineering and Mechanics
    • /
    • 제44권6호
    • /
    • pp.753-762
    • /
    • 2012
  • The ratcheting characteristics of cylindrical shell under cyclic axial loading are investigated. The specimens are subjected to stress-controlled cycling with non-zero mean stress, which causes the accumulation of plastic strain or ratcheting behavior in continuous cycles. Also, cylindrical shell shows softening behavior under symmetric axial strain-controlled loading and due to the localized buckling, which occurs in the compressive stress-strain curve of the shell; it has more residual plastic strain in comparison to the tensile stress-strain hysteresis curve. The numerical analysis was carried out by ABAQUS software using hardening models. The nonlinear isotropic/kinematic hardening model accurately simulates the ratcheting behavior of shell. Although hardening models are incapable of simulating the softening behavior of the shell, this model analyzes the softening behavior well. Moreover, the model calculates the residual plastic strain close to the experimental data. Experimental tests were performed using an INSTRON 8802 servo-hydraulic machine. Simulations show good agreement between numerical and experimental results. The results reveal that the rate of plastic strain accumulation increases for the first few cycles and then reduces in the subsequent cycles. This reduction is more rapid for numerical results in comparison to experiments.

Modeling of Mechanical Behavior of Microcantilever due to Intrinsic Strain during Deposition

  • Kim Sang-Hyun;Mani Sathyanarayanan;Boyd James G. IV
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1646-1652
    • /
    • 2006
  • A model of mechanical behavior of microcantilever due to intrinsic strain during deposition of MEMS structures is derived. A linear ordinary differential equation is derived for the beam deflection as a function of the thickness of the deposited layer. Closed-form solutions are not possible, but numerical solutions are plotted for various dimensionless ratios of the beam stiffness, the intrinsic strain, and the elastic moduli of the substrate and deposited layer. This model predicts the deflection of the cantilever as a function of the deposited layer thickness and the residual stress distribution during deposition. The usefulness of these equations is that they are indicative of the real time behavior of the structures, i.e. it predicts the deflection of the beam continuously during deposition process.

기계 가공면의 소성스트레인에 관한 연구 (A Study on Plastic Strain in Machined Surface)

  • 김태영;소율영;신형곤
    • 한국정밀공학회지
    • /
    • 제10권3호
    • /
    • pp.47-56
    • /
    • 1993
  • Typical plastic strains in the machined surface are very difficult to measure, since they are located within a very short distance from the surface and they change very rapidly. There is an alternative way to determine the residual strain in plastically deformed materials by measuring the grain size after a subsequent recrystallization precess. Although, this technique has been successfully applied by several researchers to find the plastic zone around notches and cracks in various materials and welding beads, few works have been reported using the recrystallization method to determine the residual strains in machined surface. Therefore, the purpose of this investigation is to explore the effectiveness of the recrystallization technique in machining applications and in particular, to find the effect of cutting parameters, i.e., depth of cut, rake angle, on the plastic strains. As the result, the recrystallization technique was succesfully applid to determine the plastic strain in machined surface.

  • PDF

세라믹코팅재의 잔류응력에 대한 연구 (A Study on the Residual Stresses of Ceramic Coating)

  • 한지원
    • 한국안전학회지
    • /
    • 제22권1호
    • /
    • pp.19-23
    • /
    • 2007
  • The aim of this study was to determine residual stresses in thermal barrier coatings(TBCs) by isothermal heating. Specimens were heated at the range of $1000{\sim}1600^{\circ}C$. A finite element method was used to determine the residual stresses. Finite element coupled heat transfer and elastic-plastic thermal stress analysis using a general purpose commercial FEM software ABAQUS. I obtained the stresses were not affected below the temperature of $1400^{\circ}C$ but affected over that of temperature.

X선 잔류응력을 이용한 냉간압연강의 피로손상 모델링에 관한 연구 (A Study on Fatigue Damage Modelling in Cold Rolled Steel using X-ray Residual Stress)

  • 조석수;주원식
    • 한국해양공학회지
    • /
    • 제13권4호통권35호
    • /
    • pp.55-62
    • /
    • 1999
  • Cold rolled steel has much plastic strain in the material surface produced by manufacturing process. The strain causes the variation of surface residual stress, in which influences the fatigue behavior under repeated loading. As experimental results, it was confirmed that the behavior of residual stress ${\sigma}_r$, with cycle N consisted of three stages except stress amplitude near fatigue limit in SPCC steel. On the first stage compressive residual stress decreased rapidly, on the second stage gradually, and on the last stage slightly. The relation between ${\sigma}_r$, and log N appeared linear behavior except the early part of cycle ratio $N/N_f$. The average gradient of ${\sigma}_r$, with respect to log N seemed to take a constant value without initial cycle ratio. On the other hand, the $N_f$ line was regressed by the first-order polynomial equation on ${\sigma}_r-log\;N_f$ diagram. Therefore, this study showed that both the gradient of ${\sigma}_r$, with respect to log N and the $N_f$ line was useful in predicting the cycle ratio $N/N_f$.

  • PDF

평판-관 구조물 용접시 발생하는 응력 및 변형율에 관한 연구 (A study on the stress and strain during welding of plate-to-pipe joint)

  • 나석주;김형완
    • Journal of Welding and Joining
    • /
    • 제4권2호
    • /
    • pp.30-39
    • /
    • 1986
  • In manufacturing of pipe walls for boiler units, distortion can result in pipe-web-pipe joints from the nonuniform expansion and contraction of the weld metal and the adjacent base metal during heating and cooling cycle of the welding process. In this study, the stresses and strains during longitudinal welding of the plate-to-pipe joint were investigated. Using the method of successive elastic solution, longitudinal stresses and strains during and after welding were calculated from the information of temperature distributions obtained by Rosenthal's equations. In order to confirm the validity of the numerical results, the temperature and residual stress distributions were measured and compared with the calculated results. In spite of some assumptions, the one-dimensional analytical results of residual stresses were in fairly good agreement with the experimental ones. The residual stresses due to welding of plate-to-pipe joints are tensile near the weld line and compressive in the base metal as in the welding of plates. the amount and distribution of residual stresses were deeply dependent on the heat input ratio of the plate and pipe.

  • PDF

잔류응력이 암석의 공학적 거동에 끼치는 영향 (The influence of residual stress on the engineering behaviour of rock)

  • 박형동
    • 터널과지하공간
    • /
    • 제5권4호
    • /
    • pp.363-375
    • /
    • 1995
  • Critical literature review in this study revealed that there can be a significant influence of the residual stress on the engineering properties of rock. The review also showed that few number of research works on the quantification of the influence was attributed to the limitation of the two classical measurement techniques, viz, X-ray diffraction and mechanical relaxation method. In this study, a new way of approach was sought based on the assumption that residual stress up to the failure. A series of hoop tests conducted onthe samples from the limb of Carboniferous Limestone in Clevedon, England, revealed that (i) there is no preferential orientations of microcracks and minerals which have been widely believed as the main source of the strength anisotropy of rock; (ii) the anisotropy of the tensile strength of the limestone results from the influence of the residual stress; (iii) since jointing commenced within the fold, residual stored strain energy has been released preferentially in the direction perpendicular to the major joints(o$^{\circ}$ and 90$^{\circ}$); (ⅳ) during the hoop test making it much easier to create tensile fracture in these directons, viz 45$^{\circ}$ and 135$^{\circ}$)was released during the hoop test making it much easier to create tensile fracture in these directions, viz 45$^{\circ}$and 135$^{\circ}$;(v) the direction in which the stored strain energy may be presumed to be the least, required the greatest work to cause failure.

  • PDF

The Epoxy-metal Interphase and Its Incidence on Practical Adhesion

  • Roche, Alain Andre;Aufray, Maelenn
    • 접착 및 계면
    • /
    • 제4권2호
    • /
    • pp.1-9
    • /
    • 2003
  • Epoxy-amine liquid prepolymers are extensively applied onto metallic substrates and cured to obtain painted materials or bonded joint structures. Overall performances of such systems depend on the created interphase between the organic layer and the substrate. When epoxy-amine liquid mixtures are applied onto more or less hydrated metallic oxide layer, concomitant amine chemical sorption and hydroxide dissolution appear lending to the chelate formation. As soon as the chelate concentration is higher than the solubility product, these species crystallize as sharp needles. Moreover, intrinsic and thermal residual stresses are developed within painted or bonded systems. When residual stresses are higher than the organic layer/substrate adhesion, buckling, blistering, debonding may occur leading to a catastrophic drop of system performances. Practical adhesion can be evaluated with either ultimate parameters (Fmax or Dmax) or the critical strain energy release rate, using the three point flexure test (ISO 14679-1997). We observe that, for the same system, the ultimate load decreases while residual stresses increase when the liquid/solid time increases. Ultimate loads and residual stresses depend on the metallic surface treatment. For these systems, the critical strain energy release rate which takes into account the residual stress profile and the Young's modulus gradient remains quite constant whatever the metallic surface treatment was. These variations will be discussed and correlate to the formation mechanisms of the interphase.

  • PDF