• 제목/요약/키워드: Residual strain

검색결과 638건 처리시간 0.022초

Screening, Cloning, Expression and Characterization of New Alkaline Trehalose Synthase from Pseudomonas monteilii and Its Application for Trehalose Production

  • Trakarnpaiboon, Srisakul;Bunterngsook, Benjarat;Wansuksriand, Rungtiva;Champreda, Verawat
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권10호
    • /
    • pp.1455-1464
    • /
    • 2021
  • Trehalose is a non-reducing disaccharide in increasing demand for applications in food, nutraceutical, and pharmaceutical industries. Single-step trehalose production by trehalose synthase (TreS) using maltose as a starting material is a promising alternative process for industrial application due to its simplicity and cost advantage. Pseudomonas monteilii TBRC 1196 was identified using the developed screening method as a potent strain for TreS production. The TreS gene from P. monteilii TBRC 1196 was first cloned and expressed in Escherichia coli. Purified recombinant trehalose synthase (PmTreS) had a molecular weight of 76 kDa and showed optimal pH and temperature at 9.0 and 40℃, respectively. The enzyme exhibited >90% residual activity under mesophilic condition under a broad pH range of 7-10 for 6 h. Maximum trehalose yield by PmTreS was 68.1% with low yield of glucose (4%) as a byproduct under optimal conditions, equivalent to productivity of 4.5 g/l/h using enzyme loading of 2 mg/g substrate and high concentration maltose solution (100 g/l) in a lab-scale bioreactor. The enzyme represents a potent biocatalyst for energy-saving trehalose production with potential for inhibiting microbial contamination by alkaline condition.

Compacted expansive elastic silt and tyre powder waste

  • Ghadr, Soheil;Mirsalehi, Sajjad;Assadi-Langroudi, Arya
    • Geomechanics and Engineering
    • /
    • 제18권5호
    • /
    • pp.535-543
    • /
    • 2019
  • Building on/with expansive soils with no treatment brings complications. Compacted expansive soils specifically fall short in satisfying the minimum requirements for transport embankment infrastructures, requiring the adoption of hauled virgin mineral aggregates or a sustainable alternative. Use of hauled aggregates comes at a high carbon and economical cost. On average, every 9m high embankment built with quarried/hauled soils cost $12600MJ.m^{-2}$ Embodied Energy (EE). A prospect of using mixed cutting-arising expansive soils with industrial/domestic wastes can reduce the carbon cost and ease the pressure on landfills. The widespread use of recycled materials has been extensively limited due to concerns over their long-term performance, generally low shear strength and stiffness. In this contribution, hydromechanical properties of a waste tyre sand-sized rubber (a mixture of polybutadiene, polyisoprene, elastomers, and styrene-butadiene) and expansive silt is studied, allowing the short- and long-term behaviour of optimum compacted composites to be better established. The inclusion of tyre shred substantially decreased the swelling potential/pressure and modestly lowered the compression index. Silt-Tyre powder replacement lowered the bulk density, allowing construction of lighter reinforced earth structures. The shear strength and stiffness decreased on addition of tyre powder, yet the contribution of matric suction to the shear strength remained constant for tyre shred contents up to 20%. Reinforced soils adopted a ductile post-peak plastic behaviour with enhanced failure strain, offering the opportunity to build more flexible subgrades as recommended for expansive soils. Residual water content and tyre shred content are directly correlated; tyre-reinforced silt showed a greater capacity of water storage (than natural silts) and hence a sustainable solution to waterlogging and surficial flooding particularly in urban settings. Crushed fine tyre shred mixed with expansive silts/sands at 15 to 20 wt% appear to offer the maximum reduction in swelling-shrinking properties at minimum cracking, strength loss and enhanced compressibility expenses.

Effects of Surface Machining by a Lathe on Microstructure of Near Surface Layer and Corrosion Behavior of SA182 Grade 304 Stainless Steel in Simulated Primary Water

  • Zhang, Zhiming;Wang, Jianqiu;Han, En-hou;Ke, Wei
    • Corrosion Science and Technology
    • /
    • 제18권1호
    • /
    • pp.1-7
    • /
    • 2019
  • To find proper lathe machining parameters for SA182 Grade 304 stainless steel (SS), six kinds of samples with different machining surface states were prepared using a lathe. Surface morphologies and microstructures of near surface deformed layers on different samples were analysed. Surface morphologies and chemical composition of oxide films formed on different samples in simulated primary water with $100{\mu}g/L\;O_2$ at $310^{\circ}C$ were characterized. Results showed that surface roughness was mainly affected by lathe feed. Surface machining caused grain refinement at the top layer. A severely deformed layer with different thicknesses formed on all samples. In addition to high defect density caused by surface deformation, phase transformation, residual stress, and strain also affected the oxidation behaviour of SA182 Grade 304 SS in the test solution. Machining parameters used for # 4 (feed, 0.15 mm/r; back engagement, 2 mm; cutting speed, 114.86 m/min) and # 6 (feed,0.20 mm/r; back engagement, 1 mm; cutting speed, 73.01 m/min) samples were found to be proper for lathe machining of SA182 Grade 304 SS.

취나물 점무늬병을 억제하는 Paenibacillus polymyxa JE201의 생물학적 특성 (Biological Characterization of Paenibacillus polymyxa JE201 with Antifungal Activity Against Fungal Leaf Spot Disease of Aster scaber)

  • 안성호;김다연;박병용;한지희;이상엽
    • 한국유기농업학회지
    • /
    • 제29권2호
    • /
    • pp.257-273
    • /
    • 2021
  • 취나물 재배 시 문제가 되는 점무늬병(Septoria sp.)에 대해 항균활성을 나타내는 세균 P. polymyxa JE201를 분리하였다. JE201 균주를 이용하여 점무늬병 방제효과 포장검정을 시행한 결과, 대조구로 사용한 세레나데 맥스와 비슷한 정도의 방제효과를 나타낼 정도로 효과가 있었으며, 다른 식물 병원성 진균에 대한 항균활성 스펙트럼을 조사한 결과, 10종 중 9종에 대해서도 균사생장억제력이 크게 나타나는 것으로 보아, 앞으로 추가적인 연구를 통해 다른 병에도 적용할 수 있을 것으로 기대된다.

콘크리트 궤도용 탄성레일체결장치 손상취약부 분석 (Evaluation on Damage Weak Part of Rail Fastening System for Concrete Tracks)

  • 최정열;김상진;정지승
    • 문화기술의 융합
    • /
    • 제8권3호
    • /
    • pp.265-270
    • /
    • 2022
  • 본 연구는 콘크리트 궤도용 탄성레일체결장치(System 300-1)의 손상취약부에 관한 실험 및 해석적 연구이다. 콘크리트 궤도에서 탄성레일체결장치는 열차주행 시 레일과 침목을 결속하는 핵심 궤도구성품이다. 레일체결장치 구성품 중 방진패드와 텐션 클램프(Tension Clamp)는 압축력과 부상력에 대응하며 상시 변형이 발생되는 피로부재이다. 본 연구에서는 동일구간의 운행선에서 6년, 11년, 16년 동안 사용된 탄성레일체결장치를 채취하여 사용년수에 따른 텐션 클램프의 잔류변형 특성을 분석하였다. 또한 수치해석을 바탕으로 주요 구성품별 거동메커니즘을 분석하고 손상취약부를 도출하였다. 본 연구에서 수행한 수치해석을 통해 체결력 도입부터 외력 작용에 따른 텐션 클램프 각부의 응력(변형율)을 분석하여 텐션 클램프의 손상취약부를 도출하였다.

Buckling resistance behavior of WGJ420 fire-resistant weathering steel columns under fire

  • Yiran Wu;Xianglin Yu;Yongjiu Shi;Yonglei Xu;Huiyong Ban
    • Steel and Composite Structures
    • /
    • 제47권2호
    • /
    • pp.269-287
    • /
    • 2023
  • The WGJ420 fire-resistant weathering (FRW) steel is developed and manufactured with standard yield strength of 420 MPa at room temperature, which is expected to significantly enhance the performance of steel structures with excellent fire and corrosion resistances, strong seismic capacity, high strength and ductility, good resilience and robustness. In this paper, the mechanical properties of FRW steel plates and buckling behavior of columns are investigated through tests at elevated temperatures. The stress-strain curves, mechanical properties of FRW steel such as modulus of elasticity, proof strength, tensile strength, as well as corresponding reduction factors are obtained and discussed. The recommended constitutive model based on the Ramberg-Osgood relationship, as well as the relevant formulas for mechanical properties are proposed, which provide fundamental mechanical parameters and references. A total of 12 FRW steel welded I-section columns with different slenderness ratios and buckling load ratios are tested under standard fire to understand the global buckling behavior in-depth. The influences of boundary conditions on the buckling failure modes as well as the critical temperatures are also investigated. In addition, the temperature distributions at different sections/locations of the columns are obtained. It is found that the buckling deformation curve can be divided into four stages: initial expansion stage, stable stage, compression stage and failure stage. The fire test results concluded that the residual buckling capacities of FRW steel columns are substantially higher than the conventional steel columns at elevated temperatures. Furthermore, the numerical results show good agreement with the fire test results in terms of the critical temperature and maximum axial elongation. Finally, the critical temperatures between the numerical results and various code/standard curves (GB 51249, Eurocode 3, AS 4100, BS 5950 and AISC) are compared and verified both in the buckling resistance domain and in the temperature domain. It is demonstrated that the FRW steel columns have sufficient safety redundancy for fire resistance when they are designed according to current codes or standards.

Strengthening of prestressed girder-deck system with partially debonding strand by the use of CFRP or steel plates: Analytical investigation

  • Haoran Ni;Riliang Li;Riyad S. Aboutaha
    • Computers and Concrete
    • /
    • 제31권4호
    • /
    • pp.349-358
    • /
    • 2023
  • This paper describes an in-depth analysis on flexural strength of a girder-deck system experiencing a strand debonding damage with various strengthening systems, based on finite element software ABAQUS. A detailed finite element analysis (FEA) model was developed and verified against the relevant experimental data performed by other researchers. The proposed analytical model showed a good agreement with experimental data. Based on the verified FE model, over a hundred girder-deck systems were investigated with the consideration of following variables: 1) debonding level, 2) span-to-depth ratio (L/d), 3) strengthening type, 4) strengthening material thickness. Based on the data above, a new detailed analytical model was developed and proposed for estimating residual flexural strength of the strand-debonding damaged girder-deck system with strengthening systems. It was demonstrated that both finite element model and analysis model could be used to predict flexural behaviors for debonding damaged prestressed girder-deck systems. Since the strands are debonding from surrounding concrete over a certain zone over the length of the beam, the increase of strain in strands can be linked with a ratio ψ, which is Lp/c. The analytical model was proposed and developed regarding the ratio ψ. By conducting procedure of calculating ψ, the ψ value varies from 9.3 to 70.1. Multiple nonlinear regression analysis was performed in Software IBM SPSS Statistics 27.0.1 to derive equation of ψ. ψ equation was curved to be an exponential function, and the independent variable (X) is a linear function in terms of three variables of debonding level (λ), span length (L), and amount of strengthening material (As). The coefficient of determinate (R2) for curve fitting in nonlinear regression analysis is 0.8768. The developed analytical model was compared to the ultimate capacities computed by FEA model.

원전 1차 계통수 모사환경에서 Type 304 스테인리스강의 응력부식균열개시 민감도 (Susceptibility of Stress Corrosion Crack Initiation of Type 304 SS in Simulated Primary Water Environment of PWR)

  • 조성환;김성우;이종연
    • 한국압력기기공학회 논문집
    • /
    • 제20권1호
    • /
    • pp.25-31
    • /
    • 2024
  • The core shroud of rector vessel internals (RVI) of OPR1000 and ARP1400 is made of Type 304 stainless steel (SS) by bending and welding process that may induce high deformation and residual stress in manufacturing. This work aims to evaluate the susceptibility of stress corrosion crack (SCC) initiation of bent parts of RVI in high temperature primary water environment. For SCC initiation test, tensile specimens were fabricated from the 90 degree bent plate of Type 304 SS (DT specimen), that is an archived part of a Korean APR1400. After the SCC initiation test, the specimen surface was thoroughly examined by optical and scanning electron microscopy, and compared to the specimen fabricated from the as-received plate of Type 304 SS (AR specimen). The surface observation revealed that SCC initiated on the AR specimen surface in typical intergranular (IG) mode, while SCC on the DT specimen occurred in transgrannular mode as well as IG mode. It was also found that the size and number of SCC on the DT specimen were larger than that on the AR specimen. This was attributable to a strain-hardening during the bending process. To compare the susceptibility of SCC initiation, total crack density (TCD) was calculated from the total crack length divided by the measured area of AR and DT specimens. TCD of DT specimen was 4.6 times higher than AR specimen in average, indicating that higher possibility of degradation of bent parts of RVI for a long-term operation.

Experimental and numerical investigation on the seismic behavior of the sector lead rubber damper

  • Xin Xu;Yun Zhou;Zhang Yan Chen;Song Wang;Ke Jiang
    • Earthquakes and Structures
    • /
    • 제26권3호
    • /
    • pp.203-218
    • /
    • 2024
  • Beam-column joints in the frame structure are at high risk of brittle shear failure which would lead to significant residual deformation and even the collapse of the structure during an earthquake. In order to improve the damage issue and enhance the recoverability of the beam-column joints, a sector lead rubber damper (SLRD) has been developed. The SLRD can increase the bearing capacity and energy dissipation capacity, and also demonstrating recoverability of seismic performance following cyclic loading. In this paper, the hysteretic behavior of SLRD was experimentally investigated in terms of the regular hysteretic behavior, large deformation behavior and fatigue behavior. Furthermore, a parametric analysis was performed to study the influence of the primary design parameters on the hysteretic behavior of SLRD. The results show that SLRD resist the exerted loading through the shear capacity of both rubber parts coupled with the lead cores in the pre-yielding stage of lead cores. In the post-yielding phase, it is only the rubber parts of the SLRD that provide the shear capacity while the lead cores primarily dissipate the energy through shear deformation. The SLRD possesses a robust capacity for large deformation and can sustain hysteretic behavior when subjected to a loading rotation angle of 1/7 (equivalent to 200% shear strain of the rubber component). Furthermore, it demonstrates excellent fatigue resistance, with a degradation of critical behavior indices by no more than 15% in comparison to initial values even after 30 cycles. As for the designing practice of SLRD, it is recommended to adopt the double lead core scheme, along with a rubber material having the lowest possible shear modulus while meeting the desired bearing capacity and a thickness ratio of 0.4 to 0.5 for the thin steel plate.

토마토 농축액을 이용한 무가당 알코올 발효를 위한 효모의 선발 (Screening of yeast for alcoholic fermentation of no sugar-added tomato concentrate)

  • 김동환;문재남;이슬;이수원;문혜경;김귀영
    • 한국식품저장유통학회지
    • /
    • 제23권4호
    • /
    • pp.591-598
    • /
    • 2016
  • 본 연구에서는 토마토 농축액을 이용한 무가당 알코올 발효를 통해 가장 우수한 균주를 선발하고자 하였다. 토마토 와인을 제조할 토마토 농축액($25^{\circ}Brix$)의 수분 함량은 67.33%, 조단백질 함량은 1.90%, 조지방 함량은 0.03%, 조회분 함량은 0.02%, 가용성 무질소물은 30.72%로 나타났고, 유리당은 fructose, glucose가 함유되어 있었고, 유리아미노산이 총 19종으로 glutamic acid가 814.7 mg/100 g로 가장 많이 함유되어 있었다. 알코올 함량은 발효 3일째 가장 높은 알코올 함량을 보였으며, 사용 균주 중 사용 균주 중 TWB(S. cerevisiae ICVD-47)는 8.20%로 가장 높은 알코올 함량을 나타내었고, 당도는 발효 4일차에서도 TWB(S. cerevisiae ICVD-47)는 13.25로 가장 낮은 잔류당 함량을 나타내었고, 각 균주의 당도는 $13.25{\sim}13.45^{\circ}Brix$로 비슷한 경향을 나타내었다. 환원당은 4일차에서 28.37~28.48 mg/mL의 값을 나타내어 알코올 발효 균주에 따른 차이가 없는 것으로 나타났다. pH는 4.31~4.55의 값을 나타내어 균주에 따른 pH의 차이는 없는 것으로 나타났다. 총산은 사용된 균주 모두 1일차에서 4일차까지 큰 변화가 없는 것으로 나타났다. 색도 L, a, 및 b 값은 사용된 균주 간에는 차이가 없는 것으로 나타났다. 이상의 결과 토마토 농축액 알코올 발효에 적합한 균주는 알코올 생성량이 높고, 낮은 잔류당 함량을 가진 TWB(S. cerevisiae ICVD-47)가 가장 좋은 것으로 판단된다.