• 제목/요약/키워드: Residual spatial autocorrelation

검색결과 3건 처리시간 0.016초

Residual spatial autocorrelation in macroecological and biogeographical modeling: a review

  • Gaspard, Guetchine;Kim, Daehyun;Chun, Yongwan
    • Journal of Ecology and Environment
    • /
    • 제43권2호
    • /
    • pp.191-201
    • /
    • 2019
  • Macroecologists and biogeographers continue to predict the distribution of species across space based on the relationship between biotic processes and environmental variables. This approach uses data related to, for example, species abundance or presence/absence, climate, geomorphology, and soils. Researchers have acknowledged in their statistical analyses the importance of accounting for the effects of spatial autocorrelation (SAC), which indicates a degree of dependence between pairs of nearby observations. It has been agreed that residual spatial autocorrelation (rSAC) can have a substantial impact on modeling processes and inferences. However, more attention should be paid to the sources of rSAC and the degree to which rSAC becomes problematic. Here, we review previous studies to identify diverse factors that potentially induce the presence of rSAC in macroecological and biogeographical models. Furthermore, an emphasis is put on the quantification of rSAC by seeking to unveil the magnitude to which the presence of SAC in model residuals becomes detrimental to the modeling process. It turned out that five categories of factors can drive the presence of SAC in model residuals: ecological data and processes, scale and distance, missing variables, sampling design, and assumptions and methodological approaches. Additionally, we noted that more explicit and elaborated discussion of rSAC should be presented in species distribution modeling. Future investigations involving the quantification of rSAC are recommended in order to understand when rSAC can have an adverse effect on the modeling process.

시계열 기온 분포도 작성을 위한 시공간 자기상관성 정보의 결합 (Use of Space-time Autocorrelation Information in Time-series Temperature Mapping)

  • 박노욱;장동호
    • 한국지역지리학회지
    • /
    • 제17권4호
    • /
    • pp.432-442
    • /
    • 2011
  • 기온, 강수와 같은 기후관측 자료들은 공간과 더불어 시간적인 변이를 동시에 나타낸다. 따라서 신뢰성 높은 시계열 분포도 작성을 위해 공간적 자기상관성만을 고려하는 기존 공간 내삽 기법에 시공간적 자기상관성 정보를 반영할 필요가 있다. 이 연구에서는 시계열 기온 분포도 제작을 위해 1개월 동안 1시간 간격으로 획득된 기온 관측소 자료를 대상으로 시공간 크리깅을 적용하였다. 우선 기온자료를 결정론적 경향 성분과 확률론적 잔차 성분으로 분해한 후에, 경향 성분 모델링 과정에 기온과 연관성이 높은 고도 자료를 부가 자료로 통합하여 지형 효과를 반영하는 경향 성분을 모델링하였다. 잔차 성분에 대한 시공간 베리오그램 모델링에는 곱-합 모델을 적용하여 시간과 공간 베리오그램의 상호 연관성을 반영하도록 하였다. 이러한 시공간 베리오그램 모델을 이용하여 시공간 정규 크리깅을 적용한 결과, 기존 공간적 자기상관성만을 고려하는 정규 크리깅과 고도 자료를 부가 자료로 이용하는 회귀분석 크리깅에 비해 상대적으로 높은 예측 능력을 보였다. 이러한 결과는 고도 자료와 더불어 시공간 자기상관성 정보의 이용이 중요함을 지시한다. 따라서 공간적으로 가용할 수 있는 자료의 수가 한계가 있지만 시계열적으로 자료 획득이 가능한 변수를 분석할 때, 시공간 크리깅이 유용한 내삽 방법론으로 적용될 수 있을 것으로 기대된다.

  • PDF

Tensile strength prediction of corroded steel plates by using machine learning approach

  • Karina, Cindy N.N.;Chun, Pang-jo;Okubo, Kazuaki
    • Steel and Composite Structures
    • /
    • 제24권5호
    • /
    • pp.635-641
    • /
    • 2017
  • Safety service improvement and development of efficient maintenance strategies for corroded steel structures are undeniably essential. Therefore, understanding the influence of damage caused by corrosion on the remaining load-carrying capacities such as tensile strength is required. In this study, artificial neural network (ANN) approach is proposed in order to produce a simple, accurate, and inexpensive method developed by using tensile test results, material properties and finite element method (FEM) results to train the ANN model. Initially in reproducing corroded model process, FEM was used to obtain tensile strength of artificial corroded plates, for which surface is developed by a spatial autocorrelation model. By using the corroded surface data and material properties as input data, with tensile strength as the output data, the ANN model could be trained. The accuracy of the ANN result was then verified by using leave-one-out cross-validation (LOOCV). As a result, it was confirmed that the accuracy of the ANN approach and the final output equation was developed for predicting tensile strength without tensile test results and FEM in further work. Though previous studies have been conducted, the accuracy results are still lower than the proposed ANN approach. Hence, the proposed ANN model now enables us to have a simple, rapid, and inexpensive method to predict residual tensile strength more accurately due to corrosion in steel structures.