• Title/Summary/Keyword: Residual settlement

Search Result 73, Processing Time 0.026 seconds

Dynamic Properties and Settlement Characteristics of Korea Weathered Granite Soils (화강풍화토의 동적 물성치와 침하특성에 대한 연구)

  • Park, Jong-Gwan;Kim, Yeong-Uk;Lee, In-Mo
    • Geotechnical Engineering
    • /
    • v.9 no.2
    • /
    • pp.5-14
    • /
    • 1993
  • Weathered granite soil is the most representative as a surface soil in Korea. In this paper, the dynamic properties and settlement characteristics of Korea granite soil are studied through the dynamic triaxial compression tests. The dynamic characteristics are very important on the analysis of the foundations under dynamic loading such as machine vibration and earthquake. Soil samples having different grain sixtes were prepared at the relative densities between 80oA and 90oA and tested to measure shear moduli and damping ratios at each level of shear strain. The measured shear moduli of weathered granite soils showed large variations according to the grain sizes, confining pressures, relative densities and shear strains. Sandy weathered granite had a little larger dynamic properties than the average values of the sand studied by Seed and Idriss. Pot the well compacted granite soils, little residual settlements occured due to dynamic loading.

  • PDF

A Basic Study on Relative Liquefaction Failure Risk Assessment of Domestic Small to Medium-Sized Earthfill Dams (국내 중소규모 흙댐의 상대적 액상화 파괴위험도 평가 기초 연구)

  • Park, Tae Hoon;Ha, Ik-soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.147-155
    • /
    • 2023
  • This study aims to present a method to evaluate the relative risk of failure due to liquefaction of domestic small to medium-sized earthfill dams with a height of less than 15 m, which has little information on geotechnical properties. Based on the results of previous researches, a series of methods and procedures for estimating the probability of dam failure due to liquefaction, which calculates the probability of liquefaction occurrence of the dam body, the amount of settlement at the dam crest according to the estimation of the residual strength of the dam after liquefaction, the overtopping depth determined from the amount of settlement at the dam crest, and the probability of failure of the dam due to overtopping was explicitly presented. To this end, representative properties essential for estimating the probability of failure due to the liquefaction of small to medium-sized earthfill dams were presented. Since it is almost impossible to directly determine these representative properties for each of the target dams because it is almost impossible to obtain geotechnical property information, they were estimated and determined from the results of field and laboratory tests conducted on existing small to medium-sized earthfill dams in previous researches. The method and procedure presented in this study were applied to 12 earthfill dams on a trial basis, and the liquefaction failure probability was calculated. The analysis of the calculation results confirmed that the representative properties were reasonable and that the overall evaluation procedure and method were effective.

Evaluation of Design Characteristics in the Reinforced Railroad Subgrade Through the Sensitivity Analysis (민감도 분석을 통한 철도보강노반 설계 특성 평가)

  • Kim, Dae-Sang;Hwang, Sung-Ho;Kim, Ung-Jin;Park, Young-Kon;Park, Seong-Yong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.3
    • /
    • pp.15-22
    • /
    • 2013
  • By changing from ballasted track to concrete slab track, new type railroad subgrade is strongly required to satisfy strict regulations for displacement limitations of concrete slab track. In this study, sensitivity analysis was performed to assess the design characteristics of new type reinforced railroad subgrade, which could minimize residual settlement after track construction and maintain its function as a permanent railway roadbed under large cyclic load. With developed design program, the safety analysis (circular slip failure, overturning, and sliding) and the evaluation of internal forces developed in structural members (wall and reinforcement) were performed according to vertical installation spacing and stiffness of short and long geotextile reinforcement. Based on this study, we could evaluate the applicabilities of 0.4 H short geogrid length with 0.4 m vertical installation spacing of geotextile as reinforcement and what the ground conditions are for the reinforced railroad subgrade. And also, we could grasp design characteristics of the reinforced railroad subgrade, such as the importance of connecting structure between wall and reinforcement, boundary conditions allowing displacement at wall ends to minimize maximum bending moment of wall.

A Study on the Design Method of the Reinforced Earth Structures Considering Compaction Induced Stresses (다짐 유발응력을 고려한 보강토 설계방법에 관한 연구)

  • 임철웅;백영식
    • Geotechnical Engineering
    • /
    • v.8 no.4
    • /
    • pp.5-16
    • /
    • 1992
  • The main purpose of this the sutdy is to develop the reinforced earth structure design method considering induced stresses and deflections resulting from placement and compaction of soil. In this paper, the new reinforcement Geolog developed by the author is also introduced which is being used as one of the effective earth reinforcing structure against compaction induced stresses. This study adopted the Seed's bilinear model in the estimation of the com paction induced stresses and compute the peak lateral stresses during compaction by doubled Boussinessq's elastic solution of mirror image theory, thereafter, calculate the residual compaction induced lateral stresses from the above peak lateral stress by the residual fraction. It is considered to be reasonable that the compaction induced stresses be added to the lateral earth pressures estimated from conventional gravity analysis considering the actual stresses during service life of the structures. "GEOLOG", a composite of steel bar and attached concrete stopper is found to be effective against tension and pull - out failure. In this paper, the design method considering the compaction induced stresses and the effect of Geolog reinforcement is suggested for the remforced earth structures where backkfill settlement on displacements are not allowed as in the cases of the bridge abutments or double faced reinforcement earth structures.tructures.

  • PDF

Effect of Skirt Length on Behavior of Suction Foundations for Offshore Wind Turbines Installed in Dense Sand Subjected to Earthquake Loadings (조밀한 모래지반에 설치된 해상풍력 석션기초의 스커트길이에 따른 지진하중시 거동특성)

  • Choo, Yun Wook;Olalo, Leonardo;Bae, Kyung-Tae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.4
    • /
    • pp.202-211
    • /
    • 2016
  • This study aims to analyze seismic responses of suction foundations for offshore wind turbine. For this purpose, dynamic centrifuge model tests were carried out. The skirt length of the suction foundation is a critical element for bearing mechanism against environmental loads. Thus, dynamic centrifuge model tests were performed and analyzed for three suction foundation models with the ratios of skirt length to suction foundation diameter of 0.5, 0.75, and 1 installed in dense sand. As results, the acceleration amplification at the suction foundation, residual settlement, and residual tilting angle were compared.

A Study on the Pile Material Suited for Pile Supported Embankment Reinforced by Geosynthetics (토목섬유로 보강된 성토지지말뚝 구조에 적합한 말뚝재료의 개발)

  • Choi, Choong-Lak;Lee, Kwang-Wu;Kim, Eun-Ho;Jung, Ji-Won
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.1
    • /
    • pp.21-35
    • /
    • 2016
  • It is a current trend that the concrete track is applied for high speed railway. In the case of the railway embankment constructed on soft ground, the damage to concrete track which is sensitive to settlement such as distortion and deflection could be caused by very small amount of long term settlement. Pile Supported Embankment method can be considered as the effective method to control the residual settlement of the railway embankment on soft ground. The Geosynthetics is used inside of the embankment to maximize the arching effect transmitting the load of the embankment to the top of the piles. But, PHC piles that are generally used for bridge structures are also applied as the pile supporting the load of embankment concentrated by the effect of the Geosynthetics. That is very low efficiency in respect of pile material. So, in this study, the cast in place concrete pile was selected as the most suitable pile type for supporting the embankment by a case study and the optimum mixing condition of concrete using a by-product of industry was induced by performing the mixing designs and the compressive strength designs. And it is shown that the cast in place pile with the optimum mixing condition using the by-product of industry is 2.8 times more efficient than the PHC pile for the purpose of Pile Supported Embankment by the finite element analysis method.

Soil Arching in Embarikments Suppoyed by Piles with Geosynthethics (말뚝과 토목섬유로 지지된 성토지반의 아칭효과)

  • Hong, Won-Pyo;Lee, Jae-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.6
    • /
    • pp.53-66
    • /
    • 2007
  • A series of model tests were performed to investigate the soil arching effect in embankments supported by piles with geosynthetics. In the model tests, model piles with isolated cap were inserted through the holes in a steel plate, which could be operated up and down. Then geosynthetics was laid on the pile caps below sand fills. The settlement of soft ground was simulated by lowering the plate. As the plate was lowered, the soil arching was mobilized in the embankments. The deformation of both the sand fills and geosynthetics were captured by camera. Also the loads acting on pile cap and the tensile strain of geosynthetics were monitored by data logging system. Model tests showed that the embankment loads transferred on pile cap by soil arching Increased rapidly with settlement of the soft ground. In case of the absence of geosynthetics, the loads acting on pile caps dropped to residual value after peak value, whereas loads on pile caps gradually increased until constant value in case of geosynthetic-reinforced. This illustrated that reinforcing with the geosynthetics has a good effect to restrain the settlement of embankments. Also, the deformation shape of geosynthetics between pile caps was circular. The embankment loads transferred on pile caps can be estimated by considering both soil arching and tensile strain of geosynthetics in embankments supported by piles with geosynthetics.

An analytical analysis of a single axially-loaded pile using a nonlinear softening model

  • Wu, Yue-dong;Liu, Jian;Chen, Rui
    • Geomechanics and Engineering
    • /
    • v.8 no.6
    • /
    • pp.769-781
    • /
    • 2015
  • The skin friction of a pile foundation is important and essential for its design and analysis. More attention has been given to the softening behaviour of skin friction of a pile. In this study, to investigate the load-transfer mechanism in such a case, an analytical solution using a nonlinear softening model was derived. Subsequently, a load test on the pile was performed to verify the newly developed analytical solution. The comparison between the analytical solution and test results showed a good agreement in terms of the axial force of the pile and the stress-strain relationship of the pile-soil interface. The softening behaviour of the skin friction can be simulated well when the pile is subjected to large loads; however, such behaviour is generally ignored by most existing analytical solutions. Finally, the effects of the initial shear modulus and the ratio of the residual skin friction to peak skin friction on the load-settlement curve of a pile were investigated by a parametric analysis.

A Study on the finite Element Analysis of Eddy Current Distributions using Current Vector Potential (전류 벡터 포텐셜을 이용한 와류분포의 유한요소 해석에 관한 연구)

  • 임달호;김민수;신흥교
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.12
    • /
    • pp.839-846
    • /
    • 1988
  • If we use the 2-dimensional analyzing method with the magnetic vector potential for the analysis of eddy current distribution in electric machinery, we can obtain the magnitude of eddy current but can't have the characteristic of eddy current distribution. For the settlement of this problem, we have induced the governing equation with the current vector potential and attemptted 2-dimensional analysis of eddy current distribution by finite element method. And the time domain weighted residual method is used in treatment of time differential term and we have developed the algorithm by it. And then, we analyze eddy current distributions of analytic model and aluminium disk in singlephase watt hour meter. Consequently we have verified the propriety and utility of above mentioned method.

Experimental analysis of rocking shallow foundation on cohesive sand

  • Moosavian, S.M. Hadi;Ghalandarzadeh, Abbas;Hosseini, Abdollah
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.597-608
    • /
    • 2022
  • One of the most important parameters affecting nonlinearsoil-structure interaction, especially rocking foundation, is the vertical factor of safety (F.Sv). In this research, the effect of F.Sv on the behavior of rocking foundations was experimentally investigated. A set of slow, cyclic, horizontal loading tests was conducted on elastic SDOF structures with different shallow foundations. Vertical bearing capacity tests also were conducted to determine the F.Sv more precisely. Furthermore, 10% silt was mixed with the dry sand at a 5% moisture content to reach the minimum apparent cohesion. The results of the vertical bearing capacity tests showed that the bearing capacity coefficients (Nc and Nγ) were influenced by the scaling effect. The results of horizontal cyclic loading tests showed that the trend of increase in capacity was substantially related to the source of nonlinearity and it varied by changing F.Sv. Stiffness degradation was found to occur in the final cycles of loading. The results indicated that the moment capacity and damping ratio of the system in models with lower F.Sv values depended on soil specifications such cohesiveness or non-cohesiveness and were not just a function of F.Sv.