• Title/Summary/Keyword: Residual seismic capacity

Search Result 58, Processing Time 0.021 seconds

Post-Earthquake Damage Evaluation for R/C Buildings Based on Residual Seismic Capacity (지진피해를 받은 철근콘크리트 건물의 지진피해도 판정)

  • Lee Kang Seok;Kang Dae-Eon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.109-112
    • /
    • 2005
  • In this paper described is the basic concept of the Guideline for Post-earthquake Damage Assessment of RC buildings, revised in 2001, in Japan. This paper discusses the damage rating procedures based on the residual seismic capacity index R, the ratio of residual seismic capacity to the original capacity, that is consistent with the Japanese Standard for Seismic Evaluation of Existing RC Buildings, and their validity through calibration with observed damage due to the 1995 Hyogoken-Nambu (Kobe) earthquake. Good agreement between the residual seismic capacity ratio and damage levels was observed.

  • PDF

Evaluation of Post-earthquake Seismic Capacity of Reinforced Concrete Buildings suffering from earthquakes (지진피해를 받은 철근콘크리트 건물의 잔존내진성능평가)

  • Kang, Dae-Eon;Yi, Waon-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.105-108
    • /
    • 2005
  • In damage investigation of building structures suffering from earthquake, estimation of residual seismic capacity is essential in order to access the safety of the building against aftershocks and to judge the necessity of repair and restoration. It has been proposed that an evaluation method for post-earthquake seismic capacity of reinforced concrete buildings based. on the residual energy dissipation capacity (the residual seismic capacity ratio )in lateral force-displacement curve of structural members. The proposed method was adopted in the Japanese 'Damage Level Classification Standard' revised in 200l. To evaluate the residual seismic capacity of RC column, experimental tests with positive and negative cyclic loading was carried out using RC building column specimen. Parameters used by the experiment are deformability and member proportion. From the test results, it is appropriated that the residual seismic capacity of RC buildings damaged by earthquakes is evaluated using the method in the Guideline.

  • PDF

Residual Seismic Capacity Evaluation of RC Frames with URM Infill Wall Based on Residual Crack Width and Damage Class (잔류균열폭 및 손상도에 기초한 무보강 조적벽체를 갖는 RC 골조의 잔존내진성능 평가)

  • Choi, Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.5
    • /
    • pp.41-50
    • /
    • 2009
  • Following an earthquake, the major concerns for damaged buildings are their safety/risk in the event of aftershocks, and thus a quantitative damage assessment must be performed in order to evaluate their residual seismic capacity and to identify necessary actions for the damaged buildings. Post-event damage evaluation is therefore as essential for the quick recovery of a damaged community as pre-event seismic evaluation and strengthening of vulnerable buildings. The objective of this study is to develop a post-earthquake seismic evaluation method for RC frames with URM infill wall for typical school buildings. For this purpose, full-scale, one-bay, single-story specimens having different axial loads in columns are tested under cyclic loadings. During the tests, residual crack widths, which can also be found in damaged buildings, are measured in order to estimate the residual seismic capacity from the observed damage. In this paper, the relationship between the measured residual crack width and the residual seismic capacity is discussed analytically and experimentally, and reduction factors are proposed to estimate the residual seismic capacity based on the observed damage level.

Post-earthquake assessment of buildings using displacement and acceleration response

  • Hsu, Ting-Yu;Pham, Quang-Vinh
    • Earthquakes and Structures
    • /
    • v.17 no.6
    • /
    • pp.599-609
    • /
    • 2019
  • After an earthquake, a quick seismic assessment of a structure can facilitate the recovery of operations, and consequently, improve structural resilience. Especially for facilities that play a key role in rescue or refuge efforts (e.g., hospitals and power facilities), or even economically important facilities (e.g., high-tech factories and financial centers), immediately resuming operations after disruptions resulting from an earthquake is critical. Therefore, this study proposes a prompt post-earthquake seismic evaluation method that uses displacement and acceleration measurements taken from real structural responses that resulted during an earthquake. With a prepared pre-earthquake capacity curve of a structure, the residual seismic capacity can be estimated using the residual roof drift ratio and stiffness. The proposed method was verified using a 6-story steel frame structure on a shaking table. The structure was damaged during a moderate earthquake, after which it collapsed completely during a severe earthquake. According to the experimental results, a reasonable estimation of the residual seismic capacity of structures can be performed using the proposed post-earthquake seismic evaluation method.

Evaluating seismic demands for segmental columns with low energy dissipation capacity

  • Nikbakht, Ehsan;Rashid, Khalim;Mohseni, Iman;Hejazi, Farzad
    • Earthquakes and Structures
    • /
    • v.8 no.6
    • /
    • pp.1277-1297
    • /
    • 2015
  • Post-tensioned precast segmental bridge columns have shown high level of strength and ductility, and low residual displacement, which makes them suffer minor damage after earthquake loading; however, there is still lack of confidence on their lateral response against severe seismic loading due in part to their low energy dissipation capacity. This study investigates the influence of major design factors such as post-tensioning force level, strands position, columns aspect ratio, steel jacket and mild steel ratio on seismic performance of self-centring segmental bridge columns in terms of lateral strength, residual displacement and lateral peak displacement. Seismic analyses show that increasing the continuous mild steel ratio improves the lateral peak displacement of the self-centring columns at different levels of post-tensioning (PT) forces. Such an increase in steel ratio reduces the residual drift in segmental columns with higher aspect ratio more considerably. Suggestions are proposed for the design of self-centring segmental columns with various aspect ratios at different target drifts.

Seismic fragility assessment of self-centering RC frame structures considering maximum and residual deformations

  • Li, Lu-Xi;Li, Hong-Nan;Li, Chao
    • Structural Engineering and Mechanics
    • /
    • v.68 no.6
    • /
    • pp.677-689
    • /
    • 2018
  • Residual deformation is a crucial index that should be paid special attention in the performance-based seismic analyses of reinforced concrete (RC) structures. Owing to their superior re-centering capacity under earthquake excitations, the post-tensioned self-centering (PTSC) RC frames have been proposed and developed for engineering application during the past few decades. This paper presents a comprehensive assessment on the seismic fragility of a PTSC frame by simultaneously considering maximum and residual deformations. Bivariate limit states are defined according to the pushover analyses for maximum deformations and empirical judgments for residual deformations. Incremental Dynamic Analyses (IDA) are conducted to derive the probability of exceeding predefined limit states at specific ground motion intensities. Seismic performance of the PTSC frame is compared with that of a conventional monolithic RC frame. The results show that, taking a synthetical consideration of maximum and residual deformations, the PTSC frame surpasses the monolithic frame in resisting most damage states, but is more vulnerable to ground motions with large intensities.

Post-earthquake capacity evaluation of R/C buildings based on pseudo-dynamic tests

  • Kang, Dae-Eon;Yi, Waon-Ho
    • Structural Engineering and Mechanics
    • /
    • v.24 no.1
    • /
    • pp.91-105
    • /
    • 2006
  • In this paper, post-earthquake capacity evaluation method of reinforced concrete buildings was studied. Substructure pseudo-dynamic test and static loading test of first story column in a four-story R/C building was carried out in order to investigate the validity of the evaluation method proposed in the Damage Assessment Guideline (JBDPA 2001). In pseudo-dynamic test, different levels of damage were induced in the specimens by pre-loading, and input levels of seismic motion, at which the specimens reached to the ultimate stage, were examined. From the experimental result, no significant difference in damage levels such as residual crack width between the specimens under static and pseudo-dynamic loading was found. It is shown that the seismic capacity reduction factors ${\eta}$ can provide a reasonable estimation of post-earthquake seismic capacity of R/C buildings suffered earthquakes.

Residual seismic performance of steel bridges under earthquake sequence

  • Tang, Zhanzhan;Xie, Xu;Wang, Tong
    • Earthquakes and Structures
    • /
    • v.11 no.4
    • /
    • pp.649-664
    • /
    • 2016
  • A seismic damaged bridge may be hit again by a strong aftershock or another earthquake in a short interval before the repair work has been done. However, discussions about the impact of the unrepaired damages on the residual earthquake resistance of a steel bridge are very scarce at present. In this paper, nonlinear time-history analysis of a steel arch bridge was performed using multi-scale hybrid model. Two strong historical records of main shock-aftershock sequences were taken as the input ground motions during the dynamic analysis. The strain response, local deformation and the accumulation of plasticity of the bridge with and without unrepaired seismic damage were compared. Moreover, the effect of earthquake sequence on crack initiation caused by low-cycle fatigue of the steel bridge was investigated. The results show that seismic damage has little impact on the overall structural displacement response during the aftershock. The residual local deformation, strain response and the cumulative equivalent plastic strain are affected to some extent by the unrepaired damage. Low-cycle fatigue of the steel arch bridge is not induced by the earthquake sequences. Damage indexes of low-cycle fatigue predicted based on different theories are not exactly the same.

Damage Evaluation for Precast HPFRCC Coupling Beams with Diagonal Reinforcement (대각보강근을 갖는 고인성 시멘트 복합체 커플링 보의 손상 평가)

  • Kim, Sun-Woo;Jeon, Esther;Park, Wan-Shin;Yun, Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.174-177
    • /
    • 2006
  • To restore an earthquake damaged community as quickly as possible, well-prepared reconstruction strategy is most essential. This paper reports experimental data on the seismic capacity of diagonal reinforced HPFRCC coupling beams with the Japanese Standard for Seismic Evaluation of Existing RC Buildings. Precast Based on the experimental results, HPFRCC specimen have more residual seismic capacity than RC specimen, but much study is necessary to improve the accuracy of the damage evaluation.

  • PDF

Seismic Performance of Concrete-Filled Steel Piers Part II: Pseudo-Dynamic Test and Residual Seismic Capacity (강합성교각의 내진성능평가 Part II: 유사동적실험 및 잔류내진성능 평가)

  • 조창빈;서진환;장승필
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.21-28
    • /
    • 2002
  • Ductile behavior and strength of concrete-filled steel(CFS) piers was supported by many quasi-static cyclic loading tests. This test method, however, only estimates the member′s deformation capacity under escalating and repetitive displacement and ignores dynamic and random aspects of an earthquake load. Therefore, to understand complete seismic behavior of the structure against an earthquake, dynamic tests such as shaking table test and pseudo-dynamic tests are required as well as quasi-static tests. In this paper, following "Seismic Performance of Concrete-Filled Steel Piers Part I : Quasi-Static Cyclic Loadint Test", the seismic behavior of CFS and steel piers designed for I-Soo overpass in Seoul in investigated by the pseudo-dynamic test. In addition, the residual strength of both piers after an earthquake is estimated by the quasi-static test. The results show that both piers have satisfactory ductility and strength against well-known EI Centro earthquake although the CFS pier has better strength and energy dissipation than the steel pier.