• Title/Summary/Keyword: Residual particle

Search Result 239, Processing Time 0.025 seconds

The Effect of W Particle Volume Percent on the Residual Stress of W Heavy Alloy (텅스텐계 중합금에서 텅스텐 입자의 부피비가 잔류응력에 미치는 영향)

  • 송홍섭
    • Journal of Powder Materials
    • /
    • v.1 no.1
    • /
    • pp.52-59
    • /
    • 1994
  • Since the coefficient of thermal expansion (CTE) of matrix phase is larger about 4 times than that of W particle in tungsten heavy alloy, the thermal stresses due to the CTE difference between the two phases are induced in the alloy during heating and cooling processes. In the present study, a series of W heavy alloy containing various W particle volumes of 0 to 90% is made to investigate the residual stress taking place during cooling process. The CTE and residual stress of the series of alloy are measured by dilatometer and X-ray diffractometer. The residual stress of W particle is in compressive stress irrespective of W particle vol% and tends to increase with decreasing W particle vol% while that of the matrix phase is in tensile stress. The measured residual stress of W particle is about a third of calculated thermal stress. The influence of W particle vol% on the residual stress of W heavy alloy is discussed in terms of the deformation behaviors of W particle and matrix phase.

  • PDF

Influence of Particle Size of Quartz on the Strength of Porcelain Body (자기질 요지의 강도에 미치는 석영입도의 영향)

  • 이은상;김진영
    • Journal of the Korean Ceramic Society
    • /
    • v.21 no.3
    • /
    • pp.209-216
    • /
    • 1984
  • The influence of the particle size of quartz and the change of cooling rate to the strength of conventional triaxial porcelain was studied, . The results indicate that 1. The residual quartz content was increased by particle size increasing. And the strength was increased by increas-ing residual quartz content which increased the total stress in the specimen. But the influence of residual quartz was lessened by the extent of crack between quartz particle and glass matrix 2. In order to increase the strength of the body fast cooling is suitable to small quartz particle and slow cooling is suitable to large quartz particle.

  • PDF

Influences of Particle Property and Its Size Impact Damage and Strength Degradation in Silicon Carbide Ceramics (탄화규소 세라믹의 충격손상 및 강도저하에 미치는 입자의 재질 및 크기의 영향)

  • 신형섭;전천일랑;서창민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1869-1876
    • /
    • 1992
  • The effect of particle property on FOD(foreign object damage) and strength degradation in structural ceramics especially, silicon carbide was investigated by accelerating a spherical particle having different material and different size. The damage induced showed significant differences in their patterns with increase of impact velocity. Also percussion cone was formed at the back part of specimen when particle size became large and its impact velocity exceeded a critical value. The extent of ring cracks was linearly related to particle size, however the impact of steel particle produced larger ring cracks than that of SiC particle. Increasing impact velocity the residual strength showed different degradation behaviors according to particle and its size. In the region the impact site represents nearly elastic deformation behavior, the residual strength was dependent upon the depth of cone crack regardless of particle size. However in elastic- plastic deformation region, the radial cracks led to rapid drop in residual strength.

Analysis of 3-D residual Stresses Due to Shape Memory Effects (형상기억효과에 따른 3차원 잔류응력의 해석)

  • 김홍건
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.5
    • /
    • pp.42-46
    • /
    • 1999
  • The strengthening of a metal matrix composite(MMC) by the shape memory effect(SME) of dispersed TiNi particles was theoretically studied. An analytical model was constructed for the prediction of the average residual stress(<$\delta$>m) on the base of the Eshelby's equivalent inclusion method. The analysis was performed on the TiNi particle/Al metal matrix composites with varying volume fractions and prestrains of the particle. The residual stress caused by the shape memory of predeformed fillers has been predicted to contribute significantly to the strengthening of this composite.

  • PDF

Analysis of Residual Stresses Due to Shape Memory Effects (형상기억효과에 의해 발생되는 잔류응력의 해석)

  • 노홍길;김홍건;조영태;이동주;정태진;김경석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.147-152
    • /
    • 1999
  • The strengthening of a metal matrix composite(MMC) by the shape memory effect(SME) of dispersed TiNi particles was theoretically studied. An analytical model was constructed for the prediction of the average residual stress(<$\sigma$>/sub/m) on the base of the Eshelby's equivalent inclusion method. The analysis was performed on the TiNi particle/Al metal matrix composites with varying volume fractions and prestrains of the particle. The residual stress caused by the shape memory of predeformed fillers has been predicted to contribute significantly to the strengthening of this composite.

  • PDF

Particle Transport of Residual Soils (풍화잔적토의 유동특성에 대한 연구)

  • 이인모;박광준
    • Geotechnical Engineering
    • /
    • v.13 no.5
    • /
    • pp.155-168
    • /
    • 1997
  • The phenomena of detachment and movement of One particles are one of the important mechanisms both in geotechnical and geoenvironmental engineering. In geoenvironmental engineering, in particular, movement of fine particles may facilitate the transport of contaminants since the particle surfaces absorb contaminants before movement. Weathered granitic residual soils, which are the most abundant in Korea. contain large quantities of fine particles up to 50%. The characteristics of fine particle movement of weathered granitic residual soils are investigated in this paper. Samples are obtained from Poiiong, Shinnaedong in Seoul and Andong in Kyungpook : each of the samples represents typical residual soil types in Korea. Laboratory experiments for the three adopted soil types are performed. It is found that effluent concentration of the samples is influenced by porosity, fine particle percentage and particle size distribution. The critical velocity decreases as the fine particle percentage increases and the rate of change of erosion rate increases as the porosity increases. And well-graded samples showed less effluent concentrations compared to poorly-graded samples. The governing equation on the physical mechanism of fine particle movement and its nomerical solution scheme are suggested on the basis of the test results.

  • PDF

Characteristics of Shear Behavior According to State of Particle Bonding and Crushing (입자 결합 및 파쇄 형태에 따른 전단거동 특성)

  • Jeong, Sun-Ah;Kim, Eun-Kyung;Lee, Seok-Won
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.2
    • /
    • pp.1-12
    • /
    • 2011
  • In order to analyze the influence of particle bonding and crushing on the characteristics of shear behavior, especially residual shear behavior of granular soil, ring shear test was simulated by using DEM(Discrete Element Method)-based software program PFC(Particle Flow Code). Total four models including two non-crushing models and two crushing models were created in this study by using clump or cluster model built in PFC. The applicability of Lobo-crushing model proposed by Lobo-Guerrero and Vallejo(2005) was investigated. In addition, the results of ring shear test were analyzed and compared with those of direct shear test. The results showed that the modelling of ring shear test should be conducted to investigate the residual shear behavior. The Lobo-crushing model cannot be applied to investigate the residual shear strength. Finally, it can be concluded that the numerical models excluding Lobo-crushing model suggested in this study can be used extensively for other studies concerning the residual shear behavior of granular soil including soil crushing.

Characteristics of Shear Behavior According to State of Particle Bonding and Crushing (입자 결합 및 파쇄 형태에 따른 전단거동 특성)

  • Jeong, Sun-Ah;Kim, Eun-Kyung;Lee, Dong-Seok;Lee, Seok-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.314-323
    • /
    • 2010
  • Recently, granular soils having a large particle size are frequently used as a filling material in the construction of foundation, harbor, dam, and so on. The shear behavior of this granular soil plays a key role in the stability of structures. For example, soil particle crushing occurring at the interface between structure and soil and/or within soil mass can cause the disturbance of ground characteristics and consequently induce an issues in respect of stability of structures. In order to investigate the shear behavior according to an existence and nonexistence of particle crushing, numerical analyses were conducted by using the DEM(Discrete Element Method)-based software program PFC(Particle Flow Code). Using the crushing model and non-crushing model which were created in this study, numerical analyses of ring shear test were conducted and their results were analyzed and compared. In general, landslide and slope stability are accompanied by a large displacement and consequently not only a peak strength but also a residual strength are very important in the analysis of landslide and slope stability. However the direct shear test which has been commonly used in the determination of shear strength parameters has a limitation on displacement therefore the residual strength parameters can not be obtained. The characteristics of residual shear behavior were investigated through the numerical analyses in this study.

  • PDF

Effect of Primary Si size and Residual Stress on the Wear Properties of B.390 Al Alloys (B.390 알루미늄 합금의 마모특성에 미치는 초정Si 입자크기와 잔류응력의 영향)

  • Kim, Heon-Joo;Kim, Sung-Jae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.19 no.1
    • /
    • pp.20-29
    • /
    • 2006
  • Wear behaviour of B.390 aluminum alloy with different particle sizes of primary Si against a SM45C counterface was studied as a function of wear load and sliding velocity, using pin-on-disk apparatus under dry condition. The wear rate of specimen with fine primary Si particles showed increased wear resistance at high wear load, on the other side wear resistance of coarse primary Si particle size was improved at low wear load. As the compressive residual stress in the matrix increased remarkably by liquid nitrogen(LN) treatment, wear resistance of the LN treated specimen was more excellent than that of T6 treated specimen.

Three Dimensional Finite Element Analysis of Particle Reinforced Metal Matirx Composites Considering the Thermal Residual Stress and the Non-uniform Distribution of Reinforcements (금속복합재료의 열잔류 응력과 강화재의 불규칙 분산 상태를 고려한 3차원 유한 요소 해석)

  • 강충길;오진건
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.199-209
    • /
    • 2000
  • Particles reinforced MMCs have higher specific modulus, higher specific strength, better properties at elevated temperatures and better wear resistance than monolithic metals. But the coefficient of thermal expansion(CTE) of Al6061 is 5 times larger than that of SiCp. The discrepancy of CTE makes some residual stresses inside of MMCs. This work investigates Si$C_p$/Al6061 composites at high temperatures in the microscopic view by three-dimensional elasto-plastic finite element analyses and compares the analytical results with the experimental ones. The theoretical model is not able to consider the nonuniform shape of particle. So the shape of particle is assumed to be perfect global shape. And also particle distribution is not homogeneous in experimental specimen. It is assumed to be homogeneous in simulation model. The type of particle distribution is face-centered cubic array(FCC array). Furthermore, non-homogeneous distribution is modeled by combination of several volume fractions.

  • PDF