• 제목/요약/키워드: Residual energy

검색결과 1,100건 처리시간 0.023초

한국수영만에서 잔차류장의 운동 .위치에너지의 계절변화 (Seasonal Variation of Kinetic and Potential Energy of Residual Flow Field in Suyoung Bay, Korea)

  • 김동선;유철웅
    • 한국환경과학회지
    • /
    • 제6권4호
    • /
    • pp.313-322
    • /
    • 1997
  • 한국수영만에서 잔차류장의 운동 위치에너지의 계절변화를 연구하기 위하여 우리는 에너지의 수지를 계산하고 조석에너지와 비교했다. 위치에너지는 겨울과 봄철에 크며, 밀도성층이 형성된 여름과 초가을에 작게 나타났다. 잔차류의 운동에너지는 계절적인 변화를 보이고 있으며, 단위면 적당 잔차류의 평균 운동에너지는 6.4$\times$$10^{-4}ergs s^{-1}cm^{-}2$이다. 수영 만에서 잔차류장의 계절변동은 조석잔차류의 운동에너지가 밀도류나 취송류의 운동에너지보다 큰 11월을 제외하고는 밀도류가 지배하고 있다. 잔차류의 주성분인 조석잔차류, 취송류 및 밀도류의 운동에너지의 평균백분율은 잔차류의 운동에너지에 대하여 각각 29.1%, 3.4%, 67.5% 이다. 단위면적당 잔차류의 운동에너지, 위치에너지 및 조석에너지의 비는 각각 1.0 : 6.7$\times$$10^3$ : 8.2$\times$$10^4$ 이다.

  • PDF

Employing high-temperature gas flux in a residual salt separation technique for pyroprocessing

  • Kim, Sung-Wook;Heo, Dong Hyeon;Kang, Hyun Woo;Hong, Sun-Seok;Lee, Sang-Kwon;Jeon, Min Ku;Hur, Jin-Mok;Choi, Eun-Young
    • Nuclear Engineering and Technology
    • /
    • 제51권7호
    • /
    • pp.1866-1870
    • /
    • 2019
  • Residual salt separation is an essential step in pyroprocessing because its reaction products, as prepared by electrochemical unit processes, contain frozen residual electrolyte species, which are generally composed of alkali-metal chloride salts (e.g., LiCl, KCl). In this study, a simple technique that utilizes high-temperature gas flux as a driving force to melt and push out the residual salt in the reaction products was developed. This technique is simple as it only requires the use of a heating gun in combination with a gas injection system. Consequently, $LiNO_3-ZrO_2$ and $LiCl-ZrO_2$ mixtures were successfully separated by the high-temperature gas injection (separation efficiency > 93%), thereby demonstrating the viability of this simple technique for residual salt separation.

Residual salt separation technique using centrifugal force for pyroprocessing

  • Kim, Sung-Wook;Lee, Jong Kwang;Ryu, Dongseok;Jeon, Min Ku;Hong, Sun-Seok;Heo, Dong Hyun;Choi, Eun-Young
    • Nuclear Engineering and Technology
    • /
    • 제50권7호
    • /
    • pp.1184-1189
    • /
    • 2018
  • Pyroprocessing uses various molten salts during electrochemical unit processes. Reaction products after the electrochemical processes must contain a significant amount of residual salts to be separated. Vacuum distillation is a common method to separate the residual salts; however, its high operation temperature may cause side reactions. In this study, a simple rotation technique using centrifugal force was suggested to separate the residual salts from the reaction products at relatively low temperature compared to the distillation technique. When a reaction product container with porous wall rotates inside a vessel heated above the melting point of the residual salt, the residual salt in the liquid phase is separated through centrifugal force. It was shown that the $LiNO_3-Al_2O_3$ mixture can be separated by this technique to leave solid $Al_2O_3$ inside the container, with a separation efficiency of 99.4%.

재분포된 용접잔류응력이 충격흡수에너지에 미치는 영향 (Effect of the welding residual stress redistribution on impact absorption energy)

  • 양조예;이영석
    • Journal of Welding and Joining
    • /
    • 제33권1호
    • /
    • pp.72-79
    • /
    • 2015
  • Evaluation of fracture toughness of welded structures has a significant influence on the structural design. However the residual stresses is redistributed while the welded structures is cut for preparing specimens. This study investigated an effect of the welding residual stress redistribution on the impact absorption energy of Charpy specimen. SA516Gr70 steel plate by at the flux cored arc welding (FCAW) and gas tungsten arc welding(GTAW) was cutting. Specimens for Charpy impact testing were taken from the welded plate. Two material removal mechanisms (wire cutting and water jet) were used to make the specimens. Welding residual stress and redistribution residual stress were measured using the XRD (X-Ray Diffraction) method. The amount of redistribution of residual stress depends on the different material removal mechanism. Redistribution of residual stress of reduced the impact absorption energy by 15%.

Optimized design of dual steel moment resisting system equipped with cross-anchored self-centering buckling restrained chevron brace

  • Khaneghah, Mohammadreza Ahadpour;Dehcheshmaeh, Esmaeil Mohammadi;Broujerdian, Vahid;Amiri, Gholamreza Ghodrati
    • Earthquakes and Structures
    • /
    • 제23권2호
    • /
    • pp.139-150
    • /
    • 2022
  • In most self-center braces, decreasing residual deformation is possible only by increasing pretension force, which results in lower energy dissipation capacity. On the other hand, increasing energy dissipation capacity means higher values of residual deformation. The goal of this research was to find the best design for a self-centering buckling restrained brace (SC-BRB) system by balancing self-centering capability and energy dissipation. Three, six, and nine-story structures were investigated using OpenSees software and the TCL programming language to achieve this goal. For each height, 62 different SC-BRBs were considered using different values for the pretension force of cables, the area of the buckling restrained brace (BRB) core plate, and the yield stress of the core plate. The residual deformation and dissipated energy of all the models were calculated using nonlinear analyses after cyclic loading was applied. The optimum design for each height was determined among all the models and was compared to the structure equipped with the usual BRB. The residual deformation of the framed buildings was significantly reduced, according to the findings. Also the reduction of the energy dissipation was acceptable. The optimum design of SC-BRB in 6-story building has the most reduction percent in residual deformation, it can reduce residual deformation of building 83% while causing only a 57% of reduction in dissipated energy. The greatest reduction in residual deformation versus dissipated energy reduction was for the optimum SC-BRB design of 9-story building, results indicated that it can reduce residual deformation of building 69% while causing only a 42% of reduction in dissipated energy.

Non-equibiaxial residual stress evaluation methodology using simulated indentation behavior and machine learning

  • Seongin Moon;Minjae Choi;Seokmin Hong;Sung-Woo Kim;Minho Yoon
    • Nuclear Engineering and Technology
    • /
    • 제56권4호
    • /
    • pp.1347-1356
    • /
    • 2024
  • Measuring the residual stress in the components in nuclear power plants is crucial to their safety evaluation. The instrumented indentation technique is a minimally invasive approach that can be conveniently used to determine the residual stress in structural materials in service. Because the indentation behavior of a structure with residual stresses is closely related to the elastic-plastic behavior of the indented material, an accurate understanding of the elastic-plastic behavior of the material is essential for evaluation of the residual stresses in the structures. However, due to the analytical problems associated with solving the elastic-plastic behavior, empirical equations with limited applicability have been used. In the present study, the impact of the non-equibiaxial residual stress state on indentation behavior was investigated using finite element analysis. In addition, a new nonequibiaxial residual-stress prediction methodology is proposed using a convolutional neural network, and the performance was validated. A more accurate residual-stress measurement will be possible by applying the proposed residual-stress prediction methodology in the future.

Impact damage and residual bending strength of CFRP composite laminates involved difference of fiber stacking orientation and matrics

  • 심재기;양인영;오택열
    • 한국정밀공학회지
    • /
    • 제10권4호
    • /
    • pp.152-162
    • /
    • 1993
  • The purpose of this study is to investigate problems of residual bending strength and the impact damage experimentally when CFRP composite laminates are subjected to Foreign object damage. The specimens composed of four types of CR/EPOXY and a CF/PEEK composite laminates which involved difference of fiber stracking orientation and matrics. The result were summariged as follows : 1) It is found that both orthotropic and guasi-isotropic composite laminates are increasimg lineally between impact energy and damage delamination area. 2) Delamination devel- opment energy(mm$^{2}$J) OF cf/epoxy composite aminates is less than that of CF/PEEK. 3) When impact energy is applied to specimens within 3J, the residual strength of orthotropic is greater than guasi-isotropic composite laminates. On the other hand, it is predicted that residual bending strength of orthotropic composite laminates is less than that of quasi-isotropic when impact energy is more thaen 3J. 4) It is found in CF/PEEK that for the impact side compression, residual of bending strength versus impact energy is almost constant, while in case of impact side tension, residual bending strength is decreased rapidly near 1.2J. of impact energy due to the effect of delamination buckling.

  • PDF

전열관의 굽힘 및 확관접합 잔류응력 (Residual Stress in U-Bending Deformations and Expansion Joints of Heat Exchanger Tubes)

  • 장진성;배강국;김우곤;김선재;국일현;김성청
    • 대한기계학회논문집A
    • /
    • 제24권2호
    • /
    • pp.279-289
    • /
    • 2000
  • Residual stress induced in U-bending and tube-to-tubesheet joint processes of PWR's row-1 heat exchanger tube was measured by X-ray method and Hole-Drilling Method(HDM). Compressive residual stresses(-) at the extrados surface were induced in U-bending, and its maximum value reached -319 MPa in axial direction at the position of $\psi$ = $0^{\circ}$. Tensile residual stresses(+) of $\sigma_{zz}$ = 45 MPa and $\sigma_{\theta\theta}$ = 25 MPa were introduced in the intrados surface at the position of $\psi$ = $0^{\circ}$. Maximum tensile residual stress of 170 MPa was measured at the flank side at the position of $\psi$ = $90^{\circ}$, i.e., at apex region. It was observed that higher stress gradient was generated at the irregular transition regions (ITR). The trend of residual stress induced by U bending process of the tubes was found to be related with the change of ovality. The residual stress induced by the explosive joint method was found to be lower than that by the mechanical roll method. The gradient of residual stress along the expanded tube was highest at the transition region (TR), and the residual stress in circumferential direction was found to be higher than the residual stress in axial direction.

PZT 요업체에서 입자 크기가 상전이에 미치는 영향 (Grain size effects on the dielectric phase transition in PZT ceramics)

  • 정훈택;김호기
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1989년도 춘계학술대회 논문집
    • /
    • pp.107-109
    • /
    • 1989
  • Based on the ferroelectric microstructural residual stress model, the relation between grain size and residual elastic energy was proposed. It was found that the residual elastic energy increased with decreasing grain size by modeling and DSC results. This residual elastic energy change with grain size which induce the phase transituion mode change was the cause of a diffuse phase transition in small grain size.

  • PDF

하나로 원자로를 이용한 잔류 응력의 측정 (Residual Stress Measurements at HANARO Reactor)

  • 문명국;;신은주;이창희;김헌준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.298-303
    • /
    • 2000
  • Principles of residual stress measurements by neutron diffraction and the residual stress instrument installed at 30MWt HANARO reactor in KAERI are considered. In-depth residual stress distribution was measured in aluminum VAMAS round robin sample and welded stainless steel plate, which showed high ability of the instrument for the stress measurements in components.

  • PDF