• Title/Summary/Keyword: Residual empirical process

Search Result 27, Processing Time 0.025 seconds

The Impacts of Requirement Uncertainty and Standardization on Software Project Performance : A Comparison of Korea and USA (요구사항 불확실성과 표준화가 소프트웨어 프로젝트 성과에 미치는 영향 : 한국과 미국의 비교연구)

  • 나관식
    • Journal of Information Technology Applications and Management
    • /
    • v.11 no.2
    • /
    • pp.15-27
    • /
    • 2004
  • Most software projects inevitably involve various types and degrees of uncertainty. Without proper risk assessment and coordination, software projects can easily run out of control and consume significant additional resource. Thus, risk management techniques are critical issues to information system researchers. Previous empirical studies of U.S. software firms support the adoption of development standardization and user requirement analysis techniques in risk-based software project management. Using data collected from software projects developed in Korea during 1999-2000, we conduct a comparative study to determine how risk management strategies impact software product and process performance in countries with dissimilar IT capabilities. In addition, we offer an alternative conceptualization of residual performance risk. We show that the use of residual performance risk as an intervening variable is inappropriate in IT developing countries like Korea where the role of late stage risk control remedies are critical. A revised model is proposed that generates more reliable empirical implications for Korean software projects.

  • PDF

Comparison of Structural Change Tests in Linear Regression Models

  • Kim, Jae-Hee
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.6
    • /
    • pp.1197-1211
    • /
    • 2011
  • The actual power performance of historical structural change tests are compared under various alternatives. The tests of interest are F, CUSUM, MOSUM, Moving Estimates and empirical distribution function tests with both recursive and ordinary least-squares residuals. Our comparison of the structural tests involves limiting distributions under the hypothesis, the ability to detect the alternative hypotheses under one or double structural change, and smooth change in parameters. Even though no version is uniformly superior to the other, the knowledge about the properties of those tests and connections between these tests can be used in practical structural change tests and in further research on other change tests.

A method for underwater image analysis using bi-dimensional empirical mode decomposition technique

  • Liu, Bo;Lin, Yan
    • Ocean Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.137-145
    • /
    • 2012
  • Recent developments in underwater image recognition methods have received large attention by the ocean engineering researchers. In this paper, an improved bi-dimensional empirical mode decomposition (BEMD) approach is employed to decompose the given underwater image into intrinsic mode functions (IMFs) and residual. We developed a joint algorithm based on BEMD and Canny operator to extract multi-pixel edge features at multiple scales in IMFs sub-images. So the multiple pixel edge extraction is an advantage of our approach; the other contribution of this method is the realization of the bi-dimensional sifting process, which is realized utilizing regional-based operators to detect local extreme points and constructing radial basis function for curve surface interpolation. The performance of the multi-pixel edge extraction algorithm for processing underwater image is demonstrated in the contrast experiment with both the proposed method and the phase congruency edge detection.

Evaluation of Residual Stress using IITC of Experimental Stress Analysis on Concrete Structure (실험적 응력해석의 IITC 방식에 의한 콘크리트 구조물 잔류응력 평가)

  • Lee, Ho Beom;Han, Sang Hee;Jang, Il Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.415-424
    • /
    • 2014
  • The carrying capacity of existing concrete structures is evaluated by the measured data from displacement and strain gauges for given loads and the results of numerical analysis that are compared with the measured ones. Consequently, this process could be accomplished in doing the direct measurement of residual stress on existing concrete. This study is concerned with the development of IITC (Instrumented Indentation Technique for Concrete) system which is based on the experimental stress analysis technique using non-destructive test method to evaluate the residual stress of concrete structures depending on the types of applied loadings in analysing indentation load - indentation depth curve derived experimentally on concrete surface. As a result, in this paper, almost all of systematized H/W and S/W were newly developed to estimate the residual stresses of concrete structures. Thus, the creation of new experimental equations for deriving residual stresses and automatical calculations of residual stresses using the empirical formula can lead to evaluate the structural resistances conveniently in the structures from construction phase to maintenance stage.

Two Sample Test Procedures for Linear Rank Statistics for Garch Processes

  • Chandra S. Ajay;Vanualailai Jito;Raj Sushil D.
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.3
    • /
    • pp.557-587
    • /
    • 2005
  • This paper elucidates the limiting Gaussian distribution of a class of rank order statistics {$T_N$} for two sample problem pertaining to empirical processes of the squared residuals from two independent samples of GARCH processes. A distinctive feature is that, unlike the residuals of ARMA processes, the asymptotics of {$T_N$} depend on those of GARCH volatility estimators. Based on the asymptotics of {$T_N$}, we empirically assess the relative asymptotic efficiency and effect of the GARCH specification for some GARCH residual distributions. In contrast with the independent, identically distributed or ARMA settings, these studies illuminate some interesting features of GARCH residuals.

Advanced Methodologies for Manipulating Nanoscale Features in Focused Ion Beam

  • Kim, Yang-Hee;Seo, Jong-Hyun;Lee, Ji Yeong;Ahn, Jae-Pyoung
    • Applied Microscopy
    • /
    • v.45 no.4
    • /
    • pp.208-213
    • /
    • 2015
  • Nanomanipulators installed in focused ion beam (FIB), which is used in the lift-out of lamella when preparing transmission electron microscopy specimens, have recently been employed for electrical resistance measurements, tensile and compression tests, and in situ reactions. During the pick-up process of a single nanowire (NW), there are crucial problems such as Pt, C and Ga contaminations, damage by ion beam, and adhesion force by electrostatic attraction and residual solvent. On the other hand, many empirical techniques should be considered for successful pick-up process, because NWs have the diverse size, shape, and angle on the growth substrate. The most important one in the in-situ precedence, therefore, is to select the optimum pick-up process of a single NW. Here we provide the advanced methodologies when manipulating NWs for in-situ mechanical and electrical measurements in FIB.

Optimization of Electro-UV-Ultrasonic Complex Process for E. coli Disinfection using Box-Behnken Experiment (Box-Behnken법을 이용한 E. coli 소독에서 전기-UV-초음파 복합 공정의 최적화)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.3
    • /
    • pp.149-156
    • /
    • 2011
  • This experimental design and response surface methodology (RSM) have been applied to the investigation of the electro-UV-ultrasonic complex process for the disinfection of E. coli in the water. The disinfection reactions of electro-UV-ultrasonic process were mathematically described as a function of parameters power of electrolysis ($X_1$), UV ($X_2$), and ultrasonic process ($X_3$) being modeled by use of the Box-Behnken technique, which was used for fitting 2nd order response surface model. The application of RSM yielded the following regression equation, which is empirical relationship between the residual E. coli number (Ln CFU) in water and test variables in coded unit: residual E. coli number (Ln CFU) = 23.69 - 3.75 Electrolysis - 0.67 UV - 0.26 Ultrasonic - 0.16 Electrolysis UV + 0.05 Electrolysis Ultrasonic + 0.27 $Electrolysis^2$ + 0.14 $UV^2$ - 0.01 $Ultrasonic^2$). The model predictions agreed well with the experimentally observed result ($R^2$ = 0.983). Graphical 2D contour and 3D response surface plots were used to locate the optimum range. The estimated ridge of maximum response and optimal conditions for residual E. coli number (Ln CFU) using 'numerical optimization' of Design-Expert software were 1.47 Ln CFU/L and 6.94 W of electrolysis, 6.72 W of UV and 14.23 W of ultrasonic process. This study clearly showed that response surface methodology was one of the suitable methods to optimize the operating conditions and minimize the residual E. coli number of the complex disinfection.

Use of Hydrogen Peroxide with Ozone to Simultaneously Reduce MIB and Quench Ozone Residual in Existing Water Treatment Plants Sourcing Water from the Han River (한강을 원수로 하는 오존/과산화수소 고도정수처리공정에서의 MIB제거 및 잔류오존 농도에 관한 연구)

  • McAdams, Stephen R.;Koo, Bon Jin;Jang, Myung Hoon;Lee, Sung Kyoo
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.5
    • /
    • pp.704-716
    • /
    • 2012
  • This paper provides a detailed account of pilot testing conducted at South Lake Tahoe (California), the Ddukdo (Seoul) water treatment plant (WTP) and the Bokjung (Seongnam) WTP between February, 2010, and February, 2012. The objectives were first, to characterize the reactions of ozone with hydrogen peroxide (Peroxone) for Han River water following sand filtration, second to determine empirical ozone and hydrogen peroxide doses to remove a taste-and-odor surrogate 2-methylisoborneol (MIB) using an advanced oxidation process (AOP) configuration and third, to determine the optimum dosing configuration to reduce residual ozone to a safe level at the exit of the process. The testing was performed in a real-time plant environment at both low- and high seasonal water temperatures. Experimental results including ozone decomposition rates were dependent on temperature and pH, consistent with data reported by other researchers. MIB in post-sand-filtration water was spiked to 40-50 ng/L, and in all cases, it was reduced to below the specified target level (7 ng/liter) and typically non-detect (ND). It was demonstrated that Peroxone could achieve both MIB removal and low effluent ozone residual at ozone+hydrogen peroxide doses less than those for ozone alone. An empirical predictive model, suitable for use by design engineers and operating personnel and for incorporation in plant control systems was developed. Due to a significant reduction in the ozone reaction/decomposition at low winter temperatures, results demonstrate the hydrogen peroxide can be "pre-conditioned" in order to increase initial reaction rates and achieve lower ozone residuals. Results also indicate the method, location and composition of hydrogen peroxide injection is critical to successful implementation of Peroxone without using excessive chemicals or degrading performance.

Disinfection of E. coli Using Electro-UV Complex Process: Disinfection Characteristics and Optimization by the Design of Experiment Based on the Box-Behnken Technique (전기-UV 복합 공정을 이용한 E. coli 소독 : 실험계획법중 박스-벤켄법을 이용한 소독 특성 및 최적화)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.19 no.7
    • /
    • pp.889-900
    • /
    • 2010
  • The experimental design and response surface methodology (RSM) have been applied to the investigation of the electro-UV complex process for the disinfection of E. coli in the water. The disinfection reactions of electro-UV process were mathematically described as a function of parameters power ($X_1$), NaCl dosage ($X_2$), initial pH ($X_3$) and disinfection time ($X_4$) being modeled by use of the Box-Behnken technique. The application of RSM using the Box-Behnken technique yielded the following regression equation, which is an empirical relationship between the residual E. coli number and test variables in actual variables: Ln (CFU) = 23.57 - 0.87 power - 1.87 NaCl dosage - 2.13 pH - 2.84 time - 0.09 power time - 0.07 NaCl dosage pH + 0.14 pH time + 0.03 $power^2$ + 0.47 NaCl $dosage^2$ + 0.20 $pH^2$+ 0.33 $time^2$. The model predictions agreed well with the experimentally observed result ($R^2$ = 0.9987). Graphical response surface and contour plots were used to locate the optimum point. The estimated ridge of maximum response and optimal conditions for the E. coli disinfection using canonical analysis was Ln 1.06 CFU (power, 15.40 W; NaCl dosage, 1.95 g/L, pH, 5.94 and time, 4.67 min). To confirm this optimum condition, the obtained number of the residual E. coli after three additional experiments were Ln 1.05, 1.10 and Ln 1.12. These values were within range of 0.62 (95% PI low)~1.50 (95% PI high), which indicated that conforming the reproducibility of the model.

Selection of Optimum Ratio of 3 Components (Ir-Sn-Sb) Electrode using Design of Mixture Experiments (혼합물 실험계획법을 이용한 3성분(Ir-Sn-Sb) 전극의 최적비율 선정)

  • Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.25 no.5
    • /
    • pp.737-744
    • /
    • 2016
  • For electrolysis process using an insoluble electrode, electrochemical performance was greatly affected by the manufacturing method and procedure, such as the firing temperature, pre-treatment, type of precursor solution, coating method, electrode material, etc. Components of the electrode therein is one of the most important factors in electrochemical reaction. To achieve such characteristics, a appropriate ratio of the electrode material should be carefully chosen. The aim of this research was to apply experimental design method in the optimization of electrode component for the maximum generation of oxidants in electrochemical oxidation process. Mixture design, especially expanded simplex lattice design, in DOME (design of mixture experiments) with Design Expert - commercial software - was used to analyze the data. Analysis of variance (ANOVA) showed a high coefficient of determination ($R^2$) value of 0.9470, thus ensuring a satisfactory adjustment of the $3^{rd}$ order special cubic regression model with the experimental data. The application of response surface methodology (RSM) yielded the following regression equation, which is an empirical relationship between the TRO generation concentration and independent variables(mol ratio of 3 electrode components) in a real unit: TRO generation concentration $(mg/L)=TRO\;conc.=98.25{\times}[Ir]+49.71{\times}[Sn]+95.29{\times}[Sb]-16.91{\times}[Ir]{\times}[Sn]-29.47{\times}[Ir]{\times}[Sb]-22.65{\times}[Sn]{\times}[Sb]+703.19{\times}[Ir]{\times}[Sn]{\times}[Sb]$. The optimized formulation of the 3 component electrode for an high TRO (total residual oxidants) generation was acquired at mol ratio of Ir 0.406, Sn 0.210, Sb 0.384 (desirability d value, 1).