• Title/Summary/Keyword: Residual chlorine concentration

Search Result 98, Processing Time 0.025 seconds

Effects of Deposition Variables on Plasma-Assisted CVD of TiN Films (TiN박막의 증착특성에 미치는 플라즈마 화학증착변수들의 영향)

  • 이정래;김광호;신동원;박찬경
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.10
    • /
    • pp.1188-1196
    • /
    • 1994
  • TiN films were deposited onto high speed steel(SKH9) and silicon wafer by plasma-assisted chemical vapor deposition(PACVD) using a TiCl4/N2/H2/Ar gas mixture. The effects of deposition temperature, R.F. power, and H2 concentration on the deposition of TiN were studied. The residual chlorine content and the microhardness of TiN films were also investigated. It was found that TiN films grew with a columnar structure of a strong (200) preferred orientation regardless of the substrate type and the deposition variables. The TiN films consisted of columnar-grains of about 50 to 100 nm in diameter. The columnar grains themselves contained much finer fibrous grains. As deposition temperature increased, the residual chlorine content decreased sharply. R. F. powder enhanced the deposition rate largely. Increasing of H2 concentration had little effect on the residual chlorine.

  • PDF

Effect of Residual Chlorine on the Analysis of Geosmin and 2-MIB Using SPME (Solid Phase Microextraction) (SPME를 이용한 Geosmin과 2-MIB분석 시 잔류염소의 영향에 관한 연구)

  • Kim, Sung-Jin;Hong, Seong-Ho;Min, Dal-Ki
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.6
    • /
    • pp.713-719
    • /
    • 2005
  • SPME (Soild phase microextraction) has been used in the analysis of many volatile organic compounds, such as geosmin and 2-methylisoborneol (2-MIB), trihalomethanes (THMs) in drinking water. SPME fiber is characterized by high adsorption capacity (DVB/CAR/PDMS, DVB/PDMS etc.). Although the highly active adsorption capacities of the SPME fiber are often to the chemical functional group, surface properties play a significant role in determining the surface adsorption capacities. The objectives of this study were to evaluate effect of residual chlorine on analysis of geosmin and 2-MIB. Image taken by SEM before preloaded with chlorine, the surface and porous media was almost perfect spherical shape and no clogging of pores. However, after preloaded with chlorine the surface was aggregated and pore was blocked. The recovery rate of geosmin and 2-MIB coexisting with chlorine was reduced by 35 to 62%. The recovery rate with preloaded with chlorine was reduced by 25 to 43%. The lower concentration of geosmin and 2-MIB and the higher concentration of chlorine existed in water, the lower the recovery rate was.

A Microbiological Study on the Tap Water in Seoul (서울시 수도수 중의 위생물학적 조사연구)

  • 조영채
    • Journal of Environmental Health Sciences
    • /
    • v.7 no.1
    • /
    • pp.33-41
    • /
    • 1981
  • This study was carried out to investigate Water Temperature, Residual Chlorine, Coliform Groups, and the Standard Plate Counts of Water Supply Areas provided by 7 Water Purification Plant (W.P.P) in Seoul from September 20, 1979 through October 20, 1979. The results were summarized below: 1) The mean water temperature of the 63 Water Samples was 19.8$\circ$C, the mean pH 7.18, and the mean residual chlorine concentration 0.52 ppm by each Water Supply Areas. There is no statistically significant differences between the WPP Areas, but there is significant differences between water supply areas. 2) 30(47.6%) out of the 63 Water Samples were Standard Plate Counts free and 33 Samples (52.4%) were contaminated by Standard Plate Counts. 30 (47.6%) out of 33 samples showed the existence of Standard Plate Counts less than 15 and the other 3 samples 15-30. 3) 2 (3.2%) out of the 63 Samples had the coliform. Those 2 Samples had 2 and 6 coliform group counts per 50ml respectively both of them were 0.1ppm in residual chlorine. 4) There is correlation among Water Temperature, pH, Residual Chlorine, Standard Plate Counts, and Coliform Groups. The Coefficient of Correlation(r) between Water Temperature & Residual Chlorine was 0.147, 0.240 between Water Temperature & Standard plate Counts and 0.215 between pH & Standard Plate Counts. These correlations are statistically no significant, But the correlation of coefficient between pH & Residual Chlorine was -0.291 which is showed significant correlation at p<0.05. The coefficient of correlation between Residual Chlorine & Standard Plate Counts was -0.441 which is showed Negative Correlation Statistically Significant difference at p<0.01.

  • PDF

Removal of Chlorine from Aqueous Solutions by Mulberry Leaf Powder (수용액상에서 뽕잎의 염소 제거 효과)

  • 김동청;채희정;인만진
    • Journal of Sericultural and Entomological Science
    • /
    • v.42 no.2
    • /
    • pp.78-82
    • /
    • 2000
  • In this study, a comparative removal of chlorine from aqueous solutions of mulberry leaf powder(MLP) and activated carbon(AC) was investigated. The chlorine removal capacities of MLP and AC were shown as a function of contact time, pH and initial chlorine concentration. Optimum contact time and removal pH value of MLP were determined as 2 hr and pH 10, respectively. Chlorine removal increased with increasing initial chlorine concentration up to 1.3g/L. Both Langmuir and Freundlich adsorption models were suitable for describing the short-term removal of chlorine by MLP and AC. According to Freundlich adsorption isotherms, the maximum removal capacity of MLP(0.264 mg Cl$_2$/mg) was nearly two times greater than that of AC(0.56 mg Cl$_2$/mg). These results suggested that MLP might potentially be used as an alternative to traditional water treatment materials for removal of residual chlorine in drinking water or process wastewater.

  • PDF

A Study on Cabbage Salting Brine Reuse Technology Combining an Electrochemical Method and Activated Carbon Adsorption (전기화학적 방법과 활성탄 흡착 연계 공정을 이용한 절임염수 재이용 기술 연구)

  • Lee, Eun-Sil;Kim, Daegi
    • Journal of the Korean Society for Environmental Technology
    • /
    • v.19 no.6
    • /
    • pp.536-542
    • /
    • 2018
  • A system combining an electrochemical method and an adsorption system using activated carbon was assessed to facilitate the reuse of cabbage-salting brine. IrOx/Ti insoluble catalyst electrodes were used in the experiment. The results were analyzed to identify any changes in the residual chlorine concentration according to variations in the current density at a salinity of 10 %, as well as the capacity of the activated carbon to adsorb the residual chlorine and organic matter. For current densities of $500A/m^2$ and $1,000A/m^2$, the residual chlorine concentration did not increase, instead stabilizing once the current reached 0.33 Ah/L. To assess the adsorption efficiency according to the residual chlorine concentration, the unit amount of the adsorption can be estimated from $Y=0.0066+2.087{\times}10^{-4}b$. For both residual chlorine generation using an electrochemical method and chlorine removal through activated-carbon adsorption, the unit amount of adsorption was 0.33 g/g. The maximum amount of $COD_{Cr}$ organic matter adsorbed by the activated carbon was 0.021 g/g, while for $COD_{Mn}$, the value was 0.004 g/g.

Simulation of chlorine decay by waterhammer in water distribution system based on hypothetical water demand curve (가상의 물 수요곡선에 따른 수충격에 의한 염소농도변동 모의연구)

  • Baek, Dawon;Kim, Hyunjun;Kim, Sanghyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.2
    • /
    • pp.107-113
    • /
    • 2018
  • Maintaining adequate residual chlorine concentration is an important criteria to provide secure drinking water. The chlorine decay can be influenced by unstable flow due to the transient event caused by operation of hydraulic devices in the pipeline system. In order to understand the relationship between the transient event and the chlorine decay, the probability density function based on the water demand curve of a hypothetical water distribution system was used. The irregular transient events and the same number of events with regular interval were assumed and the fate of chlorine decay was compared. The chlorine decay was modeled using a generic chlorine decay model with optimized parameters to minimize the root mean square error between the experimental chlorine concentration and the simulated chlorine concentration using genetic algorithm. As a result, the chlorine decay can be determined through the number of transients regardless of the occurrence intervals.

Intelligent Controller for Constant Control of Residual Chlorine in Water Treatment Process (정수장 잔류염소 일정제어를 위한 지능형 제어기 개발)

  • Lee, Ho-Hyun;Jang, Sang-Bok;Hong, Sung-Taek;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.147-154
    • /
    • 2014
  • In this study, chlorine modeling technique based on fuzzy system is proposed to reduce the carcinogenic substance and decide the optimal chlorine injection rate, which is affected by chlorine evaporation rate in sedimentation basin according to detention time, weather and water quality. The additional chlorine meter is installed in the inlet part of sedimentation to reduce the feedback time and implement cascade control, which leads to maintaining the residual chlorine concentration decided by fuzzy rule. It helps to take a preemptive action about long time delay, the characteristics of the disinfection process, and reduce the variation of residual chlorine rate by 7.3 times and the chlorine consumption by 40,000 dollars. It made a significant contribution to supply hygienically safe drinking water.

The Variation of the Residual Chlorine Concentration in a Distribution Reservoir (유출량 변동에 따른 모형배수지내 잔류염소농도의 변화)

  • Lee, Sang-Jun;Hyeon, In-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.6
    • /
    • pp.725-733
    • /
    • 2001
  • In this study, variation of effluent of residual chlorine concentration was estimated from bench scale distribution reservoir test according to variation of flow and baffle condition. According to the bench scale test results, when the flow rate was an unsteady state, difference between the case of no-baffle in the reservoir and the case of two-baffles in the reservoir became less than the condition when the effluent flow was in a steady state. Consequently, the results are caused by the flow rate variation. Thus, the baffle is less effective than a clearwell of steady state condition.

  • PDF

Study on the Chlorine-Resistant Bacteria Isolated from Water Pipe Network (상수도관망에서 분리한 잔류염소 내성균에 관한 연구)

  • Hyun, Jae-Yeoul;Yoon, Jong-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.3
    • /
    • pp.334-341
    • /
    • 2011
  • The free residual chlorine of tap water samples, collected from 266 faucets on the water pipe network in Daegu City, was between 0.1 and 0.79 mg/L. On microorganic tests, general bacteria and the coliform goup were not detected and thus the tap water was turned out to be fit to drink. In particular, samples of which free residual chlorine was 0.1 mg/L and over were cultured in R2A agar media at $25^{\circ}C$ for 7 days, and as a result heterotrophic bacteria were detected in 65.9% of samples; (1). The closer tap water got to the faucet from the stilling basin, the lower residual chlorine concentration became but the more the bacterial count became. And, more bacteria were detected in the R2A agar medium than in the PCA medium. (2). In the case of separated strains, most colonies were reddish or yellowish. 16S rRNA sequence was identified as Methylobacterium sp. and Williamsia sp., and yellow strain was identified as Sphingomonas sp., Sphingobium sp., Novosphingobium sp., Blastomonas sp., Rhodococcus sp. and Microbacterium sp. White strain was identified as Staphylococcus sp. (3). Sterilized tap water in polyethylene bottles was inoculated with separated strain and was left as it was for 2 months. As a result, bio-film was observed in tap water inoculated with Methylobacterium sp. and Sphingomonas sp. It was found that heterotrophic bacteria increased when free residual chlorine was removed from tap water in the water pipe network. Thus, there is a need to determine a base value for heterotrophic bacteria in order to check the cleanliness of tap water in the water pipe network.

Development of multi-objective optimal design approach for water distribution systems based on water quality-hydraulic constraints according to network characteristic (네트워크 특징에 따른 수질-수리 제약조건 기반 상수도관망 다목적 최적 설계 기술개발)

  • Ko, Mun Jin;Choi, Young Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.1
    • /
    • pp.59-70
    • /
    • 2022
  • Water distribution systems (WDSs) are a representative infrastructure injecting chlorine to disinfect the pathogenic microorganisms and supplying water from sources to consumers. Also, WDSs prescribe to maintain the usual standard (0.1-4.0 mg/L) of residual chlorine. However, the user's usage pattern, water age, network shape, and type affect the hydraulic features (i.e. nodal pressure, pipe velocity) and water quality features (i.e., the residual chlorine concentration). Therefore, this study developed an optimization approach for optimizing WDSs considering water quality-hydraulic factors using Multi-objective Harmony Search (MOHS). The design cost and the system resilience were applied as the design objective functions, and the nodal pressure and the concentration of residual chlorine are used as constraints. The derived optimal designs through this approach were analyzed according to network characteristics such as the network shapes and type. These optimal designs can meet the safety of economic and water quality aspects to increase user acceptance.