• 제목/요약/키워드: Residual WSC

검색결과 7건 처리시간 0.019초

The Effect of Pre-wilting and Incorporation of Maize Meal on the Fermentation of Bana Grass Silage

  • Manyawu, G.J.;Sibanda, S.;Mutisi, C.;Chakoma, I.C.;Ndiweni, P.N.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권6호
    • /
    • pp.843-851
    • /
    • 2003
  • An experiment was conducted to investigate the effects of pre-wilting Bana grass (Pennisetum purpureum x P. americanum) herbage under sunny conditions for 0, 6, 18, 24, 32 and 48 h and ensiling it with maize meal. Four levels of maize meal(viz., 0, 5, 10 and 15% on fresh weight (Fw) basis) were tested. The experiment had a split-plot design. Wilting increased the concentration of water soluble carbohydrates (WSC) significantly (p<0.001) on a Fw basis, although there were no significant changes on DM basis. Unwilted grass contained $36.1g{\cdot}WSC{\cdot}kg^{-1}{\cdot}Fw$ ($127.6g{\cdot}kg^{-1}{\cdot}DM$) and this increased to $64.1g{\cdot}WSC{\cdot}kg^{-1}{\cdot}Fw$ ($116.7g{\cdot}kg^{-1}{\cdot}DM$) after 48 h of pre-wilting. Wilting also increased the DM content of herbage significantly (p>0.001) from 250 to $620g{\cdot}kg^{-1}$, between 0 and 48 h respectively. The concentration of fermentation end-products decreased (except butyric acid) and pH increased when the period of wilting increased, indicating that fermentation was restricted. In particular, lactic acid content declined from 50.8 to $26.2g{\cdot}kg^{-1}{\cdot}DM$ (p<0.01) and the residual WSC contents of silage increased from 2.7 with fresh herbage to $18.1g{\cdot}kg^{-1}{\cdot}DM$ with 48 h of wilting (p<0.001). Rapid wilting for 24 h, to a DM of $450g{\cdot}kg^{-1}$ was optimum since important increases in pH, residual WSC and DMD occurred at this level of wilting. Acetic acid, butyric acid and ammoniacal-N contents were lowest with 24 h of wilting. There were no significant interactions between length of wilting and the incorporation of maize meal. Wilting had a greater influence on fermentation than the incorporation of maize meal. Addition of maize meal facilitated fermentation by increasing forage DM content and reducing effluent production. In addition, the maize meal increased DMD. It was concluded that maize meal should generally be incorporated at a level of 5% on fresh weight basis.

Fermentation Quality of Italian Ryegrass (Lolium multiflorum Lam.) Silages Treated with Encapsulated-glucose, Glucose, Sorbic Acid and Pre-fermented Juices

  • Shao, Tao;Zhanga, L.;Shimojo, M.;Masuda, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권11호
    • /
    • pp.1699-1704
    • /
    • 2007
  • This experiment was carried out to evaluate the effects of adding encapsulated-glucose, glucose, sorbic acid or prefermented juice of epiphytic lactic acid bacteria (FJLB) on the fermentation quality and residual mono- and disaccharide composition of Italian ryegrass (Lolium multiflorum Lam) silages. The additive treatments were as follows: (1) control (no addition), (2) encapsulated-glucose addition at 0.5% for glucose, (3) glucose addition at 1%, (4) sorbic acid addition at 0.1%, (5) FJLB addition at a theoretical application rate of $2.67{\times}10^5$ CFU (colony forming unit) $g^{-1}$, on a fresh weight basis of Italian ryegrass. Although control and encapsulated-glucose treatments had higher contents of butyric acid (33.45, 21.50 g $kg^{-1}$ DM) and ammonia-N/Total nitrogen (114.91, 87.01 g $kg^{-1}$) as compared with the other treated silages, the fermentation in all silages was clearly dominated by lactic acid. This was well indicated by the low pH (4.38-3.59), and high lactic acid/acetic acid (4.39-22.97) and lactic acid content (46.85-121.76 g $kg^{-1}$ DM). Encapsulated-0.5% glucose and glucose addition increased lactic acid/acetic acid, and significantly (p<0.05) decreased ammonia-N/total nitrogen, and the contents of butyric acid and total volatile fatty acids (VFAs) as compared with the control. However, there were higher butyric acid and lower residual mono-and di-saccharides on the two treatments as compared with sorbic acid and FJLB addition, and their utilization efficiency of water soluble carbohydrates (WSC) was lower than that of both sorbic acid and FJLB additions. Sorbic acid addition showed the lowest content of ethanol and ammonia-N/total nitrogen, and the highest content of residual fructose and total mono-and disaccharides as well as the higher lactic acid/acetic acid value. Sorbic acid addition decreased the loss of mono-and disaccharides, and inhibited the activity of clostridial and other undesirable bacteria, and greatly increased the utilization efficiency of fermentable substrates by epiphytic LAB. FJLB addition had the lowest pH value and the highest lactic acid content among all additive treatments, with the most intensive lactic acid fermentation occurring in FJLB treated silage. This resulted in the faster accumulation of lactic acid and faster pH reduction. Sorbic acid and FJLB addition depressed clostridia or other undesirable bacterial fermentation which decreased the WSC loss and saved the fermentable substrate for lactic acid fermentation.

Effects of Adding Glucose, Sorbic Acid and Pre-fermented Juices on the Fermentation Quality of Guineagrass (Panicum maximum Jacq.) Silages

  • Shao, Tao;Ohba, N.;Shimojo, M.;Masuda, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권6호
    • /
    • pp.808-813
    • /
    • 2004
  • This study was conducted to evaluate the effects of adding glucose (G), sorbic acid (S), pre-fermented juice of epiphytic lactic acid bacteria (FJLB) and their combinations on the fermentation qualities and residual mono-and di-saccharides compositions of guineagrass silage. The additives used in this experiment were 1% glucose, 0.1% sorbic acid and FJLB at a theoretical application rate of 9.0${\times}$105 CFU $g^{-1}$ on the fresh weight basis of guineagrass, respectively. There was a total of eight treatments in this experiment: (1) C (without additives), (2) FJLB, (3) S, (4) G, (5) FJLB+S, (6) FJLB+G, (7) S+G, (8) FJLB+S+G. After 30 days of storage, the silos were opened for chemical analyses. Based on the results, all additives were efficient in improving the fermentation quality of guineagrass silage. This was well indicated by significantly (p<0.05) lower pH and BA content and significantly (p<0.05) higher LA content in the treated silages except for the FJLB than in the C. However, there was only a slight increase in LA for the FJLB as compared with the C, which might be due to the low WSC content of the original guineagrass (34.4 g $kg^{-1}$). When the FJLB+S and FJLB+G were added, there were significant (p<0.05) decreases in pH and significant (p<0.05) increases in LA as compared with the FJLB alone. This indicated that the G, S and FJLB were of synergestic effects on the silage fermentation quality. The G combination treatments including the G alone showed large improvements in the fermentation quality as compared with the treatments without the G. This suggested that adding fermentable substrates (G) to plant materials such as guineagrass, which contain low WSC, intermediate population of epiphytic LAB, CP and DM content, is more important and efficient for improving the fermentation quality of silages than adding a number of species of domestic LAB (FJLB) and aerobic bacteria inhibitor (S).

Improvement of Fermentation and Nutritive Quality of Straw-grass Silage by Inclusion of Wet Hulless-barley Distillers' Grains in Tibet

  • Yuan, Xianjun;Yu, Chengqun;Shimojo, M.;Shao, Tao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권4호
    • /
    • pp.479-485
    • /
    • 2012
  • In order to develop methods that would enlarge the feed resources in Tibet, mixtures of hulless-barley straw and tall fescue were ensiled with four levels (0, 10%, 20%, and 30% of fresh weight) of wet hulless-barley distillers' grains (WHDG). The silos were opened after 7, 14 or 30 d of ensiling, and the fermentation characteristics and nutritive quality of the silages were analyzed. WHDG addition significantly improved fermentation quality, as indicated by the faster decline of pH, rapid accumulation of lactic acid (LA) (p<0.05), and lower butyric acid content and ammonia-N/total N (p<0.05) as compared with the control. These results indicated that WHDG additions not only effectively inhibited the activity of aerobic bacteria, but also resulted in faster and greatly enhanced LA production and pH value decline, which restricted activity of undesirable bacteria, resulting in more residual water soluble carbohydrates (WSC) in the silages. The protein content of WHDG-containing silages were significantly higher (p<0.05) higher than that of the control. In conclusion, the addition of WHDG increased the fermentation and nutritive quality of straw-grass silage, and this effect was more marked when the inclusion rate of WHDG was greater than 20%.

예건 및 첨가제가 호밀사일리지의 발효특성과 사료가치 및 호기적 안정성에 미치는 영향 (Effects of Wilting and Additives on the Fermentation Chrateristics , Quality and Aerobic Stability of Rye Silage)

  • 이광녕;김동암
    • 한국초지조사료학회지
    • /
    • 제17권2호
    • /
    • pp.187-198
    • /
    • 1997
  • This experiment was conducted to evaluate effects of wilting and additives on fermetation characteristics, quality and aerobic stability of silage of rye(Seca1e cereale L.) harvested at the early heading stage. Harvested rye was wilted or mixed with beet pulp and then treated with formic acid or lactic acid bacteria(LAB) inoculant. Treatments were consisted of direct cut(DC), wilted(WT), beet pulp added(BP), direct cut and formate applied(DF), wilted and formate applied(WF), beet pulp and formate applied(BF), direct cut and LAB inoculated(DL), beet pulp added and LAB inoculated(BL), and wilted and LAB inoculated(WL) silages. Afler 70 days of ensiling period, the silages were opened and exposed to air for 7 days, and the silages of opening day(0 day) were compared with the silages exposed to air for 7 days(7 day). 1. LAB inoculated rye silages(DL, WL, BL) lowered pH values effectively eom the third day of ensiling and showed most stable pattern of pH changes during the initial fermentation process. Direct cut and formate applied(DF), beet pulp and formate applied(BF) and beet pulp added(BP) silages were also effective in lowering pH from the seventh day thai direct cut treatment(DC). 2. pH was low below 3.7 in all treatments of 0 day. After 7-day period of aerobic exposure, DL and WL showed considerable increases in pH from 3.5 and 3.4 to 8.3 and 6.4, respectively. 3. Direct cut rye silages(DF, DC, DL) and beet pulp and formate treatment(BF) produced effluent of 121.2, 85.9, 80.3 and 34.2 mlkg, respectively and these were greater than others(P<0.01). Beet pulp retained 1.61 I/kg of effluent at the application rate of 50 kg/t in comparing BP with DC, and formate application increased the amount of effluent in comparing DF and BF with DC and BP, respectively(P<0.01). 4. Beet pulp and LAB treatment(B1) was highest in content of lactate as 3.1% and formate treated silages(DF, WF, BF) showed lower content of lactate and total acid than others. LAB inoculated(D1, WL, BL) and wilted (WT) silages were graded to be good quality as a second group by the Flieg's score. Formate applied silages (DF, WF, BF) were graded as a foum group lower than DC by one. 5. Residual content of WSC of rye silage was higher in BP, BF, DL and BL than direct cut treatment(M3) (P< 0.01). Formate application had a tendency to increase the content of residual content of WSC. 6. For the ratio of NH3-N to Total N, wilted and LAB inoculated(W1) and direct cut and LAB inoculated(D1) silages were lowest on 0 day as 8.9 and 9.3% respectively. But after 7-day period of aerobic exposure, WL and DL showed largest increase of the ratio of $NH_3-N$ to Total N from 0 day(P<0.01). 7. On 0 day wilted(WT), beet pulp and formate treatment(BF), and beet pulp and LAB treatment(B1) were lower than direct cut treatment(DC) for NDF and ADF concentrations consistently. Formate applied silages (DF, WF, BF) made little change in ADF and NDF concentrations during 7 day period of aerobic exposure. DL and WL showed a large increase in ADF and NDF concentrations under aerobic condition(P<0.01). 8. IVDMD values of wilted(WT), beet pulp added(BP), wilted and LAB inoculated(W1) and beet pulp added and LAB inoculated(B1) silages were higher than direct-cut treatmentPC) as 84.7, 84.7, 84.4 and 83.0%, respectively on 0 day. But during 7-day period of aerobic exposure, a great decreae in IVDMD of WL was showed(P<0.01). The experimental results indicate that wilted silage(WT) could be recommended as the most effective treatment for reducing efluent and increasing quality and feed value of rye silage without deteriorating aerobic stability more than direct cut treatment(DC). Additionally, under unfavorable weather condition beet pulp added and LAB inoculated treatment(T3L) might be the possible alternative for successful ensiling of forage rye.

  • PDF

Effect of Different Rates of Ethanol Additive on Fermentation Quality of Napiergrass (Pennisetum purpureum)

  • Zhang, Lei;Yu, C.Q.;Shimojo, M.;Shao, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권5호
    • /
    • pp.636-642
    • /
    • 2011
  • The effect of different rates of ethanol additive on fermentation quality of napiergrass (Pennisetum purpureum) and residual water soluble carbohydrate were studied in the experiment. The addition rate of ethanol was 0%, 1.5%, 2.5%, 3.5%, 4.5% on fresh weight of napiergrass. The laboratory silos were kept in the room, then were opened on 1, 3, 5, 7, 14, 30 days after ensiling and the changes of silage quality were analyzed, respectively. There was a fast and large reduction in pH from the 5th day of ensiling to below 4.2 except for the 4.5% treatment. After five days the pH of silage decreased slowly and the pH of the ethanol additions was lower than the control. Lactic acid content of ethanol treatments increased significantly (p<0.05) from the 5th day of ensiling, reaching the highest value on either the 7th day or 14th day. The ethanol additive inhibited the break down of silage protein and the ammonia nitrogen content of ethanol addition silage was significantly (p<0.05) lower than the control after 30 days of ensiling. Within the initial first day of ensiling the water soluble carbohydrate content declined quickly. The efficiency of water soluble carbohydrate usage was higher in silage with ethanol than in the control. The acetic acid of ethanol treatment was significantly (p<0.05) lower than control on first and 14th day, but there was no significant (p>0.05) difference among the ethanol addition silages. The volatile fatty acids content of silage increased gradually from the first day of ensiling and reached the peak on 14th day or 30th day and the content of ethanol addition treatment was significantly (p<0.05) lower than the control. The experimental results indicated that adding ethanol inhibited the use of protein and water soluble carbohydrate of aerobic bacteria and reduced the silage losses during the early stage of ensiling and thus supplied more fermentation substrate for lactic acid bacteria and improved the fermentation quality of napiergrass.

Effects of Combined Treatments of Lactic Acid Bacteria and Cell Wall Degrading Enzymes on Fermentation and Composition of Italian Ryegrass (Lolium multiflorum Lam.) Silage

  • Ridla, M.;Uchida, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제11권3호
    • /
    • pp.277-284
    • /
    • 1998
  • This experiment was carried out to study the effects of lactic acid bacteria (LAB) inoculation and addition of cell wall degrading enzymes on the fermentation characteristics and chemical compositions of Italian ryegrass silage. An inoculant LAB with or without a cell wall degrading enzyme of Acremoniumcellulase (A), or Meicellulase (M) or a mixture of both (AM), was applied to 1 kg of fresh Italian ryegrass sample. The treatments were control untreated, LAB-treated (application rate $10^5$ cfu/g fresh sample), LAB+A 0.005%, LAB + A 0.01%, LAB+A 0.02%, LAB + M 0.005%, LAB + M 0.01%, LAB + M 0.02%, LAB+AM 0.005%, LAB + AM 0.01% and LAB+AM 0.02%. The sample was ensiled into 2-L vinyl bottle silo, with 9 silages of each treatment were made (a total of 99 silages). Three silages of each treatment were incubated at 20, 30 and $40{^{\circ}C}$ for an approximately 2-months storage period. All silages were well preserved as evidenced by their low pH values (3.79-4.20) and high lactic acid concentrations (7.71-11.34% DM). The fermentation quality and chemical composition of the control untreated and the LAB-treated silages were similar, except that for volatile basic nitrogen (VBN) content was lower (p < 0.05) in the LAB-treated silages. LAB + cellulase treatments improved the fermentation quality of silages by decreasing (p < 0.01) pH values and increasing (p<0.01) lactic acid concentrations, in all of cellulase types and incubation temperatures. Increasing amount of cellulase addition resulted in further decrease (p < 0.01) of pH value and increases (p < 0.01) of lactic acid and residual water soluble carbohydrate (WSC) concentrations. LAB + cellulase treatments reduced (p<0.01) NDF, ADF, hemicellulose and cellulose contents of silages compared with both the control untreated and LAB-treated silages. LAB + cellulase treatments did not affect the silage digestibility due to fact of in vitro dry matter digestibility (IVDMD) was similar in all silages. The silages treated with cellulase A resulted in a better fermentation quality and a higher rate of cell wall reduction losses than those of the silages treated with cellulases M and AM. Incubation temperature of $30{^{\circ}C}$ seemed to be more suitable for the fermentation of Italian ryegrass silages than those of 20 and $40{^{\circ}C}$.