• Title/Summary/Keyword: Residual Stress Relaxation

Search Result 131, Processing Time 0.04 seconds

Fatigue Life Evaluation Model for Welded feints Based on Nominal Stress and Residual Stress Relaxation (잔류응력 완화를 고려한 공칭응력 기반 용접재의 피로수명 평가 모델)

  • 구병춘;양승용;정흥채;최성규
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.249-251
    • /
    • 2004
  • According to our fatigue tests carried out at 20 ㎐, R=0.1 on transversely butt-welded joints, fatigue strengths of as-welded specimens, that is, specimens having residual stress are higher than those of annealed specimens in short hie range, but vice verse in long life range. This behavior seems to be concerned mainly with residual stress relaxation by applied loading. After analyzing the welding process, we conducted finite element analysis to quantify the degree of residual stress relaxation. By taking into account residual stress relaxation, modified Goodman diagram, and nominal stress, we evaluated the fatigue life of the welded joint from the S-N curve for the parent material. The estimated results are in a good agreement with the experimental results.

  • PDF

Numerical Analysis and Experimental Verification of Relaxation and Redistribution of Welding Residual Stresses (용접잔류응력의 이완과 재분포 해석 및 실험적 검증)

  • Song, Ha-Cheol;Jo, Young-Chun;Jang, Chang-Doo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.6
    • /
    • pp.84-90
    • /
    • 2004
  • For the precise assessment of the effect of welding residual stresses on structural strength and fatigue crack growth behavior, new FE analysis algorithms for the estimation of residual stress relaxation due to external load and redistribution due to fatigue crack propagation were proposed in this paper. Initial welding residual stress field was obtained by thermal elasto-plastic analysis considering temperature dependent material properties, and the amount of residual stress relaxation and redistribution were assessed by subsequent elasto-plastic analysis In the analysis of fatigue crack propagation, the applied SIF(Stress Intensity Factor) range was evaluated by $\frac{1}{4}$-point displacement extrapolation method, and the effect of welding residual stresses on crack propagation was considered by introducing the effective SIF concept. The test results of crack propagations were compared with the predicted data obtained by the analysis.

A Study on the Method of Residual Stress Relaxation during Wire Drawing and Evaluation of Residual Stress Using Nano Indentation Test (신선 시 선재의 잔류응력 완화 방법에 관한 연구 및 나노 압입 시험을 이용한 잔류응력 평가)

  • Ko Dae-Cheol;Hwang Won-Ho;Lee Sang-Kon;Kim Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.162-169
    • /
    • 2006
  • Steel cord which is used as reinforcement in car tires is produced by wet-drawing process. Recently the quality improvement of the steel cord product is demanded by the tire market. After cold drawing process, produced residual stresses have a harmful effect on the durability of the wire and become the cause which decreases the quality of the product. Therefore, to improve the quality of the steel cord product, the research regarding the method of residual stress relaxation is necessary. To evaluate the quality of the cold drawn wire, it is very important to measure the residual stress, because the residual stress decides a variety of the quality level which is demanded in the cold drawn wire. The aim of this study is to propose residual stress relaxation method in the drawn wire using FE-analysis. The validity of the analysis results was verified by Nano indentation test.

Fatigue Life Evaluation Based on Welding Residual Stress Relaxation and Notch Strain Approach for Cruciform Welded Joint (용접잔류응력 이완 및 노치변형률법을 적용한 십자형 필렛용접 이음부의 피로수명 평가)

  • Han, Jeong-Woo;Han, Seung-Ho;Shin, Byung-Chun;Kim, Jae-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1103-1108
    • /
    • 2003
  • The fatigue strength of welded joint is influenced by the welding residual stress which is relaxed depending on local stress distributed in vicinity of stress raisers, eg. under cut, overlap and blow hole. To evaluate its fatigue life the geometry of the stress raisers and the welding residual stress should be taken into account. The several methods based on notch strain approach have been proposed in order to consider the two factors above mentioned. These methods, however, have shown considerable differences between analytical and experimental results. It is due to the fact that the amount of the relaxed welding residual stress evaluated by the cyclic stress-strain relationship do not correspond with that occurred in reality. In this paper the residual stress relaxation model based on experimental results was used in order to reduce the discrepancy of the estimated amount of the relaxed welding residual stress. Under an assumption of the superimposition of the relaxed welding residual stress and the local stress, a modified notch strain approach was proposed and verified to the cruciform welded joint.

  • PDF

Rheological Properties of Mat-type Seedlings (Mat-묘(苗)의 리올러지 특성(特性))

  • Yi, C.K.;Huh, Y.K.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.1
    • /
    • pp.8-15
    • /
    • 1989
  • Agricultural materials do not react in a purely elastic manner, and their responses when subjected to stress and strain are appeared from a combination of elastic and viscous behavior. Various researchers have studied the mechanical and rheological properties of the many agricultural materials, but those properties are available mostly foreign varieties of agricultural products. Rheological properties of rice seedlings become important to formulate the principles governing their mechanical behavior. The objectives of this study were to experimentally determine the stress relaxation properties of rice seedlings such as three Japonica-type and one Indica ${\times}$ Japonica hybrid in the transplanting age. The results of this study are summarized as follows; 1. The stress relaxation behavior could be described by the generalized Maxwell model. 2. The phenomenon of stress relaxation happened abruptly just after loading and this phenomenon weakened with the loading time lapsed. 3. With increase of the initial stress, the stress relaxation intensity and residual stress increased, while the relaxation time was constant with increased, while the relaxation time was constant with increase of the level of initial stress. 4. With increase of loading rate, the stress relaxation intensity increased, while the relaxation time and residual stress decreased.

  • PDF

Residual Stress in Welds of High Strength Steel( POSTEN60, POSTEN80) (고강도강(POSTEN60, POSTEN80) 용접접합부의 잔류응력)

  • Chang, Kyong Ho;Lee, Chin Hyung
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.519-528
    • /
    • 2004
  • Most of ferrous b.c.c weld materials may experience martensitic transformation during rapid cooling after welding. And it is well known that volume expansion due to phase transformation could influence in the case of welding of high tensile strength steels on the relaxation of welding residual stress. To apply this effect practically, it is a prerequisite to establish a numerical model which is able to estimate the effect of phase transformation on residual stress relaxation quantitatively. In this study, we investigated the effect of phase transformation on the relaxation of welding residual stress through experiment. And three-dimensional thermal elastic-plastic FEM analysis is conducted to reproduce the effect of phase transformation on the relaxation of welding residual stress. Also we carried out the analysis of welding residual stress in welds of similar or dissimilar steels considering the effect of residual stress relaxation due to phase transformation.

A Study on Weld Residual Stress Relaxation by furnaced and local PWHT Procedures (노내 및 국부 후열처리에 의한 잔류응력 완화 거동 평가)

  • Lee, Seung-Gun;Kim, Jong-Sung;Jin, Tae-Eun;Dong, P.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.250-255
    • /
    • 2004
  • In this paper, we established baseline information and insight on residual stress relief mechanism associated with furnaced and local PWHT(post weld heat treatment) operation. Based on FEM analysis results, we suggested that furnaced PWHT stress relief mechanism was based on creep relaxation and local PWHT stress relief mechanism involved complicated interactions between plasticity and creep. In case of furnaced PWHT, significant stress relaxation was occurred in the early stage of PWHT. In case of local PWHT, stress relaxation magnitude was increased as PWHT time increased. Finally, We have proposed that detailed furnaced and local PWHT procedure, and qualification criteria to support current codes of practices.

  • PDF

Numerical Modeling of the Transformation Temperature Effect on the Relaxation of Welding Residual Stress (용접 잔류응력 완화에 미치는 변태 온도의 영향에 관한 수치적 모델링)

  • Jang, Gyoung-Bok;Kang, Sung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2552-2559
    • /
    • 2000
  • Most of ferrous b.c.c weld materials have martensitic transformation during rapid cooling after welding. It is well known that volume expansion due to the phase transformation could influence on the relaxation of welding residual stress. To apply this effect practically, it is necessary to establish a numerical model which is able to estimate the effect of phase transformation on residual stress relaxation quantitatively. For this purpose, the analysis is carried out in two regions, i.e., heating and cooling, because the variation of material properties following a phase transformation in cooling is different in comparison with the case in heating, even at the same temperature. The variation of material properties following phase transformation is considered by the adjustment of specific heat and thermal expansion coefficient, and the distribution of residual stress in analysis is compared with that of experiment by previous study. In this study, simplified numerical procedures considering phase transformation, which based on a commercial finite element package was established through comparing with the experimental data of residual stress distribution by other researcher. To consider the phase transformation effect on residual stress relaxation, the transition of mechanical and thermal property such as thermal expansion coefficient and specific heat capacity was found by try and error method in this analysis. In addition to, since the transformation temperature changes by the kind and control of alloying elements, the steel with many kinds of transformation temperature were selected and the effect of transformation on stress releasement was investigated by the numerical procedures considering phase transformation.

A Study on the Prediction of Thermally-Induced Residual Stress and Birefringence in Quenched Polystyrene Plate Including Free Volume Theory (자유 체적이론을 고려한 급냉 폴리스티렌판에 발생하는 잔류응력과 복굴절 형성에 관한 연구)

  • Kim, Jong-Sun;Yoon, Kyung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.77-87
    • /
    • 2003
  • The residual stress and birefringence in injection-molded plastic parts can be divided into the flow-induced residual stress and birefringence produced in flowing stage, the thermally-induced residual stress and birefringence produced in cooling stage. However, the physics involved in the generation of the thermally-induced residual stress and birefringence still remains to be understood. Because polymer experiences viscoelastic history near the glass-transition temperature it is hard to model the entire process. Volume relaxation phenomenon was included to predict the final thermally-induced residual stress and birefringence in quenched plastic parts more accurately. The present study focused on comparing the predicted values far thermally-induced residual stress and birefringence with and without volume relaxation behavior (or free volume theory) under free and constrained quenching conditions. As a result, tile residual stress remained as a tensile stress at the center and as a compressible stress near the surface for the free quenching cases. In contract the residual stress remained as a compressible stress at the center and as a tensile stress near the surface fur the constrained quenching cases. The residual birefringence remained as minus values at the center and as plus values near the surface for the free quenching cases. Interestingly the residual birefringence showed minus values in entire zone for the constrained quenching cases. In the prediction of birefringence only the case including free volume theory showed the correct result for the distribution of birefringence in thickness direction.

Fatigue Life Estimation of Welded Components Considering Welding Residual Stress Relaxation and Its Mean Stress Effect (잔류응력 이완 및 이의 평균응력 효과를 고려한 용접부 피로수명 평가)

  • Han, Seung-Ho;Han, Jeong-Woo;Shin, Byung-Chun;Kim, Jae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.175-182
    • /
    • 2003
  • The fatigue life of welded joints is sensitive to welding residual stress and complexity of their geometric shapes. To predict the fatigue life more reasonably. the effects of welding residual stress and its relaxation on their fatigue strengths should be considered quantitatively, which are often regarded to be equivalent to the effects of mean stresses by external loads. The hot-spot stress concept should be also adopted which can reduce the dependence of fatigue strengths for various welding details. Considering the factors mentioned above, a fatigue life prediction model using the modified Goodman's diagram was proposed. In this model, an equivalent stress was introduced which is composed of the mean stress based on the hot-spot stress concept and the relaxed welding residual stress. From the verification of the proposed model to real welding details, it is proved that this model can be applied to predict reasonably their fatigue lives.