• Title/Summary/Keyword: Residual Stress Pore

Search Result 39, Processing Time 0.02 seconds

A Study on the Adhesion Strength and Residual Stress Measurement of Plasma Sprayed Cr$_3$C$_2$-NiCr Coating (크롬탄화물 용사피막의 접착력 및 잔류응력측정에 관한 연구)

  • ;;Kim, E. H.;Kwun, S. I.
    • Journal of Welding and Joining
    • /
    • v.14 no.4
    • /
    • pp.43-52
    • /
    • 1996
  • The plasma sprayed Cr$_{2}$C$_{2}$-NiCr coatings are widely used as wear-resistant and corrosion-resistant materials. The mechanical properties of the plasma sprayed Cr$_{2}$C$_{2}$-NiCr coatings were examined in this study. The distribution of the residual stress with the coating thickness was also examined by X-ray diffraction method. The pore in the coatings could be classified into two types ; one is the intrinsic pore originated from the spraying powder, the other is the extrinsic pore formed during spraying. During the tensile adhesion test, the fracture occurred at the interface of top coat and substrate or top coat and bond coat depending on the existence of bond coat. It was found that the compressive residual stress near the interface decreased with the increase of the top coat thickness. The tensile adhesion strength of the coating without bond coat was higher than that with bond coat, because the coating with bond coat has higher horizontal crack density near the interface between bond coat and top coat.

  • PDF

Effect of the Residual Excess Pore Water Pressure on the Slope Stability Subjected to Earthquake Motion (잔류 과잉공극수압이 지진 하중을 받는 사면의 안정에 미치는 영향)

  • Lee, Jun-Dae;Kwon, Young-Cheul;Bae, Woo-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.2 s.74
    • /
    • pp.107-113
    • /
    • 2006
  • Earthquake motion is one of the most significant influence factors on the slope stability. In this paper, an effective stress analysis with the elasto-plastic model was carried out to investigate the behavior of the slope stability subjected to the successive two strong earthquake motions, fore and main shock. The major influence of fore shock to the slope stability was considered as the existence of the residual excess pore water pressure. The paper presents the influence of the existence of the fore shock to slope stability using the numerical analyses. In conclusion, the excess pore pressure by the fore shock was not dissipated during the 7hrs of consolidation. By this residual excess pore water pressure, the factor of safety at the sliding face showed the minimum values, and the deformations of slope was large when compared with the case that considered the main shock only. Furthermore, the minimum of the factor of safety came out after the end of the earthquake motion.

A Study on Wear Properties of Plasma Sprayed $Cr_3C_2$-NiCr Coating at High Temperature (크롬탄화물 용사피막의 고온마모 특성연구)

  • 김의현;권숙인
    • Journal of Welding and Joining
    • /
    • v.11 no.4
    • /
    • pp.91-102
    • /
    • 1993
  • The plasma sprayed $Cr_3C_2$-NiCr coatings are widely used as wear-resistant and corrosion-resistant materials. The mechanical and wear properties of the plasma sprayed $Cr_3C_2$-NiCr coating on steel plate were examined in this study. The pore in the coatings could be classified into two types, the one is the intrinsic pore originated from the spraying powder, the other is the extrinsic pore formed during spraying. During the tensile adhesion test, the fracture occured at the interface of top coating and bond coating. It is though that the compressive residual stress increases with the increase of the top coating thickness. From the wear test, it was found that the wear rate increased with the increase of the sliding velocity regardless of the temperature. It is thought that the fracture toughness reduces with the increase of the sliding velocity at $30^{\circ}C$ and that the adhesion amount increases with the increase of the sliding velocity at $400^{\circ}C$ It is concluded that the wear mechanism at $30^{\circ}C$ is the fracture and pull-out of the carbide particles due to the fatigue on sliding surface, while the wear mechanism at $400^{\circ}C$ is the adhesion of the smeared layer formed during wear process.

  • PDF

Dynamic Analysis of Gravity Quay Wall Considering Development of Excess Pore Pressure in Backfill Soil (과잉간극수압 발생을 고려한 중력식 안벽구조물의 동적해석)

  • Ryu, Moo-Sung;Hwang, Jai-Ik;Kim, Sung-Ryul
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.39-47
    • /
    • 2010
  • In this paper, a total stress analysis method for gravity quay walls is suggested. The method can evaluate the displacement of the quay walls considering the effect of excess pore pressure developed in backfill soils. This method changes the stiffness of backfill soils according to the expected magnitude of the excess pore pressure. For practical application, evaluation methods are suggested for determining the excess pore pressure ratio developed in the backfill soils and the backfill stiffness that corresponds to the excess pore pressure ratio. This method is important in practical applications because the displacement of the quay walls can be evaluated by using only the basic input properties in the total stress analysis. The applicability of the suggested method was verified by comparing the results of the analysis with the results of 1-g shaking table tests. From the comparison, it was found that the calculated displacements from the suggested method showed good agreement with the measured displacements of the quay walls. It was also found that the excess pore pressure in backfill soils is a governing influence on the dynamic behavior of quay walls.

Investigation and Analysis of Cracks in Multi-layer Ceramic Capacitor (다층세라믹 콘덴서에서 생성된 크랙의 관찰과 분석)

  • Lee, Chul-Seung;Kang, Byung-Sung;Hur, Kang-Heon;Park, Jin-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.2
    • /
    • pp.211-218
    • /
    • 2009
  • For the Y5V characteristic MLCC which is very prone to crack, it is important to to find out the basic cause of the crack. After finding out the crack origin, the materials and processes should be developed to remove the crack. The microstructures of the cracks were investigated using the fractographic method for the various types of cracks such as an exterior crack, a cyclic thermal shock crack, and an piezo-electric crack. It was found out that the crack origin was the pore at the end of the Ni inner electrode after bake-out. Even though the three dimensional crack shapes were different, the crack origins were seemed to be similar. The exterior crack could grow from the origin with the aids of residual and applied stress. FEM (finite element method) analysis was used to calculate the stress distribution of residual and applied stress. And the concept of fracture mechanics was applied for the explanation of the crack initiation and propagation from the stresses concentration.

Cyclic Shear Strength of Anisotropically Consolidated Snnd (비등방 압밀 모래의 반복 전단강도)

  • Kim, Byung-Tak;Kim, Young-Su;Seo, In-Shik;Jeong, Dong-Gil
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.3
    • /
    • pp.73-85
    • /
    • 2002
  • This paper is focused on studying the undrained cyclic triaxial behavior of saturated Nak-dong River sand, using anisotropically consolidated specimens. A test of isotropically consolidated specimens was performed to compare the results of the anisotropically consolidated specimens. The cyclic shear stre3ngth of the sand under various combinations of initial static shear stress and relative density was considered. Failure was defined as a 5% double amplitude cyclic strain and a 5% residual axial strain for both reversal stress and no reversal stress conditions. Using this definition, the cyclic strength of the anisotropically consolidated specimens was affected by the initial static shear stress. For anisotropically consolidated Nak-dong River dense sand, the cyclic strength is greater than that of Toyolura silica sand but is smaller than that of Dogs Bay carbonate sand. By comparing the experimental and predictecl results, it was possible to predict the residual pore pressure of Nak-dong River sand using Hyodo's model with initial static shear stress subjected cyclic loading.

Fabrication of SiC Converted Graphite by Chemical Vapor Reaction Method(II) (화학적 기상 반응법에 의한 탄화규소 피복 흑연의 제조(II))

  • 윤영훈;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.1
    • /
    • pp.21-29
    • /
    • 1999
  • The effects of density and pore size distribution of substrate in preparing SiC conversiton layer on graphite substrate were investigated. The chemical reaction for formation of SiC conversion layer was occurred at substrate surface or below surface through SiC gas infiltration. It was supposed that the pore size distribution required for the sufficient SiO gas infiltration and the continuous chemical reaction during conversion process was in the range of 1.0∼10.0$\mu\textrm{m}$. In the stress analysis of SiC layer with finite element method (FEM), the residual stress distribution due to thermal mismatch was shown. However, the compressive stress was measured in SiC layer by X-ray diffraction, it was presumed that the residual stress distribution of SiC layer was mainly influenced by the constraining effect of interlayer between SiC layer and graphite substrate, and the densification behaviro and the grain growth in SiC conversion layer.

  • PDF

A study on the liquefaction risk in seismic design of foundations

  • Ardeshiri-Lajimi, Saeid;Yazdani, Mahmoud;Assadi-Langroudi, Arya
    • Geomechanics and Engineering
    • /
    • v.11 no.6
    • /
    • pp.805-820
    • /
    • 2016
  • A fully coupled non-linear effective stress response finite difference (FD) model is built to survey the counter-intuitive recent findings on the reliance of pore water pressure ratio on foundation contact pressure. Two alternative design scenarios for a benchmark problem are explored and contrasted in the light of construction emission rates using the EFFC-DFI methodology. A strain-hardening effective stress plasticity model is adopted to simulate the dynamic loading. A combination of input motions, contact pressure, initial vertical total pressure and distance to foundation centreline are employed, as model variables, to further investigate the control of permanent and variable actions on the residual pore pressure ratio. The model is verified against the Ghosh and Madabhushi high acceleration field test database. The outputs of this work are aimed to improve the current computer-aided seismic foundation design that relies on ground's packing state and consistency. The results confirm that on seismic excitation of shallow foundations, the likelihood of effective stress loss is greater in deeper depths and across free field. For the benchmark problem, adopting a shallow foundation system instead of piled foundation benefitted in a 75% less emission rate, a marked proportion of which is owed to reduced materials and haulage carbon cost.

Analysis of an Actual Slope Failure in the Residual Soil by Suction Stress Based Effective Stress (흡수응력에 기반한 유효응력에 의한 실제 잔류토 사면 붕괴의 해석)

  • Oh, Seboong;Lu, Ning;Park, Young Mog;Lee, Junsuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3C
    • /
    • pp.113-120
    • /
    • 2012
  • An actual slope failure was analyzed in residual soils at Jinju. Due to rainfall infiltration, the safety factor decreases in the unsaturated layers, since the effective stress and shear strength decrease. In this study, the effective stress is based on suction stress using soil water retention curve. Unsaturated properties were evaluated on soil water retention curve, hydraulic conductivity and shear strength with samples from the site. After infiltration analysis of unsaturated flow under the actual rainfall, the distribution of pore water pressure could be calculated in the slope layers. In the stress field of finite elements, an elastic analysis calculated total stress distribution in the layers and also shear stresses on the slip surface using elastic model. On the slip surface, suction stress and effective stress evaluated the shear strength. As a result, the factor of safety was calculated due to rainfall, which could simulate the actual slope failure. In particular, it was found that the suction stress increases and both the effective stress and the shear strength decrease simultaneously on the slip surface.

Effect of Saturation on Resilient Modulus of Cohesive soils as subgrade (점성토의 회복탄성계수($M_r$)에 대한 포화도의 영향)

  • Kim, Dong-Gyou;Croft, Frank M.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1140-1147
    • /
    • 2005
  • The objective of this study was to identify the effect of the degree of saturation on the resilient modulus of cohesive soils as subgrade. Six representative cohesive soils representing A-4, A-6, and A-7-6 soil types collected from road construction sites across Ohio, were tested in the laboratory to determine their basic engineering properties. Resilient modulus tests were conducted on unsaturated cohesive soils at optimum moisture content, and samples compacted to optimum conditions but allowed to fully saturate. The subgrade compacted at optimum moisture content may be fully saturated due to seasonal change. Laboratory tests on fully saturated cohesive soils showed that the resilient modulus of saturated soils decreased to less than half that of soil specimens tested at optimum moisture content. The reduction of resilient modulus would possibly be caused by the buildup of pore water pressure. In resilient modulus testing performed in this study on saturated samples, pore water pressure increases were observed. Pore water pressure and residual pore water pressure gradually increased with an increase in deviator stress.

  • PDF