• Title/Summary/Keyword: Residual Stress Analysis

Search Result 1,095, Processing Time 0.026 seconds

Finite Element Analysis of Effect of Preheating on the Residual Stress in 304 Stainless Steel Weldment (304 스테인레스강 용접부 잔류응력에 미치는 예열 효과의 유한요속 해석)

  • 장경복;김하근;강성수
    • Journal of Welding and Joining
    • /
    • v.16 no.5
    • /
    • pp.67-75
    • /
    • 1998
  • This study aimed at he experimental and finite element analytic investigation of the effect of preheating on he residual stress of weldment. In this study, an autogenous arc welding was used on type 304 stainless steel and MARC as F.E.M. common code was utilized in analysis The analyses include transient and moving heat source and thermal properties as function of temperature. During welding, the thermal cycles of four locations in the weldment were recorded to investigate of the behavior of thermal stress and residual stress. The experimental and analytic results had good coincidence and show that there are two factors influencing the formation of welding residual stress in preheat process. One is the elevation of welding equilibrium temperature and the other is the increase of amount of heat input. The former decrease welding residual stress and the latter increase welding residual stress. Therefore, the cumulative effects result in the welding residual stress not being improved significantly with preheating in 304 stainless steel.

  • PDF

Residual Stress Analysis of AISI 304 Surface Welding Plate by 3D Finite Element Method (3 차원 유한요소법을 이용한 AISI 304 표면용접평판의 잔류응력해석)

  • Lee, Kyoung-Soo;Kim, Tae-Ryong;Kim, Maan-Won;Park, Jai-Hak
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.390-395
    • /
    • 2008
  • This study is performed to understand three dimensional characteristics of weld residual stress for the surface weld on the stainless steel plate. AISI 304 plate with one path weld on the surface was used as a test specimen. Finite element analysis was done to analyze thermal transient and residual stress due to weld. The result of finite element analysis was validated by previous paper and measurement data. Among various techniques for residual stress measurement, instrumented ball indentation method was applied. The calculated residual stresses by finite element analysis showed good agreement with the measured results.

  • PDF

A Study on the Analysis of Residual Stress in Weldment by Considering the Phase Transformation of Carbon Steel (상변태를 고려한 탄소강 용접부의 잔류응력 해석에 관한 연구)

  • Jo, Si-Hun;Kim, Jae-Ung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.390-398
    • /
    • 2001
  • Welding process generates distortion and residual stress in the weldment due to rapid heating and cooling. Welding distortion and residual stress in the welded structure result in many troubles such as dimensional inaccuracies in assembling and safety problem during service. The accurate prediction of welding residual stress is thus very important to improve the quality of weldment and find the way to reduce itself. This paper suggests new analysis method to predict welding residual stress by considering solid phase transformation during welding process. Using the method, analysis is performed for medium and low carbon steel. The analysis result for medium carbon steel reveals that case considering phase transformation has compressive residual stress in contrast with the case neglecting phase transformation because of martensite formation. However, for the case of low carbon steel, residual stress shows little difference between the case considering phase transformation and the other case, because it has small transformation strain and recovers rapidly stress after phase transformation.

Numerical Modeling for the Analysis of Residual Stress Redistribution due to Crack Propagation (균열 진전에 따른 잔류응력 재분포 해석을 위한 수치해석 모델링)

  • 송하철;이창현;장창두
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.245-251
    • /
    • 1999
  • As the crack grows in the residual stress fields, the distribution of the residual stress is changed. In this study, a finite element modeling technique is developed to simulate the redistribution of residual stress due to crack propagation. To certify the accuracy, the crack propagation tests were carried out and tile effective stress intensity factor range was evaluated considering the redistribution of residual stress from the FE analysis.

  • PDF

ASSESSMENT OF POSSIBILITY OF PRIMARY WATER STRESS CORROSION CRACKING OCCURRENCE BASED ON RESIDUAL STRESS ANALYSIS IN PRESSURIZER SAFETY NOZZLE OF NUCLEAR POWER PLANT

  • Lee, Kyoung-Soo;Kim, W.;Lee, Jeong-Geun
    • Nuclear Engineering and Technology
    • /
    • v.44 no.3
    • /
    • pp.343-354
    • /
    • 2012
  • Primary water stress corrosion cracking (PWSCC) is a major safety concern in the nuclear power industry worldwide. PWSCC is known to initiate only in the condition in which sufficiently high tensile stress is applied to alloy 600 tube material or alloy 82/182 weld material in pressurized water reactor operating environments. However, it is still uncertain how much tensile stress is re-quired to generate PWSCC or what causes such high tensile stress. This study was performed to pre-dict the magnitude of weld residual stress and operating stress and compare it with previous experi-mental results for PWSCC initiation. For the study, a pressurizer safety nozzle was selected because it is reported to be vulnerable to PWSCC in overseas plants. The assessment was conducted by nu-merical analysis. Before performing stress analysis for plant conditions, a preliminary mock-up ana-lysis was done. The result of the preliminary analysis was validated by residual stress measurement in the mock-up. After verification of the analysis methodology, an analysis under plant conditions was conducted. The analysis results show that the stress level is not high enough to initiate PWSCC. If a plant is properly welded and operated, PWSCC is not likely to occur in the pressurizer safety nozzle.

Residual Stress Analysis of Cold Rolled Sheet in Shadow Mask (Shadow Mask용 냉간 압연박판의 잔류응력 해석)

  • 정호승;조종래;문영훈;김교성
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.195-198
    • /
    • 2002
  • Residual stress of sheet occurs during cold rolling and it is hard to avoid and inevitable. The residual stress in the sheet cause etching curls when it suffers peroration process. The residual stress through the thickness direction in the sheet is a function of a friction coefficient, total reduction, mil size and initial sheet thickness. To estimate the residual stress and deformation due to etching curl, FEM analysis is performed. A numerical analysis is used a ANSYS 5.6 and an elastic-plastic constitutive equations. rho simulation results indicate a distribution of residual stress.

  • PDF

A Study on Residual Stress Characteristics for Joint of Rock in Ring Shear Tests (링 전단시험기를 이용한 암석절리의 잔류강도 특성에 관한 연구)

  • 권준욱;김선명;윤지선
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.6
    • /
    • pp.35-41
    • /
    • 2000
  • Residual stress is defined as a minimum stress with a large displacement of specimens and the residual stress after peak shear stress appears with displacement volume but there is no provision to select the residual stress. In the previous study, residual stress was recorded when the change of shear load is small in the condition of the strain more than 15%. But, in this study, hyperbolic function((No Abstract.see full/text), b=experimental constant) of soil test is adapted to joint of rock and the propriety is investigated. In a landslide and landsliding of artificial slope, wedge failure of tunnel with a large displacement, tests are simulated from peak stress to residual stress for safety analysis. But now. direct shear stress and triaxial compressive tests are usually performed to find out characteristics of shear stress about joint. Although these tests get a small displacement, that data of peak stress and residual stress are used for safety analysis. In this study, we tried to determine failure criteria for joints of rock using ring shear test machine. The residual stress following shear behavior was determined by the result of ring shear test and direct shear test. In conclusion, after comparing the results of the two test, we found that cohesion(c) and internal friction angle(ø) of ring shear test are 30% and 22% respectively of those of the direct shear test.

  • PDF

A Study on the Welding Residual Stress Analysis of the Spot Welding Point (전기저항 점용접부의 용접잔류응력 해석에 관한 연구)

  • 손일선;배동호
    • Proceedings of the KWS Conference
    • /
    • 1999.05a
    • /
    • pp.233-236
    • /
    • 1999
  • The welding residual stress should be considered in fatigue stress analysis because it develope during the process of the electric resistance spot welding and it causes bad affect on the fatigue crack initiation and growth at nugget edge of spot welded points. Therefore the accurate estimation of residual stress is crucial. In this study, nonlinear finite element analysis on welding residual stress generated during the process of the spot welding was conducted, and their results were compared with the experimental data measured by X-ray diffraction method. From the results, it was found that welding residual stress existed as tension in the nugget center and as compression around the nugget edge.

  • PDF

Proposal of residual stress mitigation in nuclear safety-related austenitic stainless steel TP304 pipe bended by local induction heating process via elastic-plastic finite element analysis

  • Kim, Jong-Sung;Kim, Kyoung-Soo;Oh, Young-Jin;Oh, Chang-Young
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1451-1469
    • /
    • 2019
  • This paper proposes a residual stress mitigation of a nuclear safety-related austenitic stainless steel TP304 pipe bended by local induction heating process via performing elastic-plastic finite element analysis. Residual stress distributions of the pipe bend were calculated by performing finite element analysis. Validity of the finite element analysis procedure was verified via comparing with temperature histories measured by using thermocouples, ultrasonic thickness measurement results, and residual stress measurement results by a hole-drilling method. Parametric finite element stress analysis was performed to investigate effects of the process and geometric shape variables on the residual stresses on inner surfaces of the pipe by applying the verified procedure. As a result of the parametric analysis, it was found that it is difficult to considerably reduce the inner surface residual stresses by changing the existing process and geometric shape variables. So, in order to mitigate the residual stresses, effect of an additional process such as cooling after the bending on the residual stresses was investigated. Finally, it was identified that the additional heating after the bending can significantly reduce the residual stresses while other variables have insignificant effect.

Evaluation of the Residual Stress of Thin Film Based on the Nanoindentation and Finite Element Analysis. (유한요소해석과 나노인덴테이션을 활용한 박막의 잔류응력 평가)

  • 황병원;김영석;박준원
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.355-358
    • /
    • 2003
  • To estimate the residual stresses in the thin film and surface coatings, combined method based on nanoindentation and finite element (FE) analysis was developed. A simple equation for estimating the residual stress was composed of the hardness and the parameters which can be driven from the nanoindentation loading and unloading behaviors. FE analysis on the nanoindentation procedure under the various residual stress levels was performed to determine the parameters that included in the equation. The equation showed a good coincidence between the estimated residual stresses and those for the FE analysis. Thus the proposed method was considered as a useful method for estimating the residual stresses in the thin film without stress free specimen.

  • PDF