• Title/Summary/Keyword: Residual Peroxide

Search Result 40, Processing Time 0.031 seconds

Changes in chemical properties and cytotoxicity of turmeric pigments by microwave treatment (마이크로파처리에 의한 심황색소의 화학안정성 및 세포독성 변화)

  • Song, EiSeul;Hong, Jungil
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.6
    • /
    • pp.693-698
    • /
    • 2017
  • Turmeric is a yellow food-coloring spice containing curcuminoids, curcumin, demethoxycurcumin (DMC), and bisdemethoxycurcumin (BMC), which have several physiological effects. In the present study, the effect of microwave irradiation on the chemical properties, antioxidant activity, and cytotoxicity of turmeric were investigated. Degradation of turmeric pigments was accelerated upon increase in irradiation time or intensity at 405 nm. Residual levels of curcumin, DMC, and BMC after 5 minutes of irradiation at 700 W were 11.3, 34.4, and 71.2%, respectively. Scavenging activities of turmeric pigment against 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-azobis (2-amidinopropane) dihydrochloride (AAPH) peroxyl radical and nitrite were enhanced significantly after microwave radiation. However, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity remained unaffected. Cytotoxic activity of turmeric was significantly reduced, and hydrogen peroxide generated from turmeric increased after microwave irradiation. The results obtained indicate that microwave irradiation affects chemical stability and bioactivity of turmeric pigment. Hence, these effects should be considered when processing foods containing turmeric pigments.

Degumming Effect on Vegetable oil of Degumming agent (각종 탈검제에 의한 식물성 기름의 탈검효과)

  • 김덕숙;안명수
    • Korean journal of food and cookery science
    • /
    • v.4 no.1
    • /
    • pp.27-32
    • /
    • 1988
  • The almost similar degumming effect was obtained by using oxalic acid instead of phosphoric acid, which also improves waste-water treatment. At this point, solution of Phosphoric, Acetic, Citric, Oxalic, and Nitric acid were used for degumming of rapeseed and soybean oil. Compared with Phosphoric(PA) and Oxalic acid(OA) were showed a simillar degumming effect in these vegetable oils. In rapeseed oil of 85% PA treating group and 5,10% OA fretting group, residual soap and phosphorus content in neutralized oil, color in bleached oil, and peroxide value and fatty acid content in deodrized oil were showed to simillar result. Soybean oil as well as rapeseed oil were showed to similar result. As a result, we could comfirmed substitutive possibility, which change PA into OA as a degumming agent. In the other hand, waste waters were obtained from 55% PA treating group and 10% OA treating group. Analytical result for this waste waters has showed a wide difference, especially in the BOD and COD. The amount of treating agents and time required in the precipitation seperation and chemical treatment each 3 and 1.7 times, which is PA treating group than OA treating group. We have investigated both the simillar degumming effect by OA solution and an alternative the pollution program means of a chemical treatment process is not possible.

  • PDF

Changes in Natural Antioxidants in Oils Extracted from the Bran and Germ of Keumkang and Dark Northern Spring Wheats During Photo-oxidation (금강밀과 dark northern spring밀의 기울과 배아에서 추출한 기름의 광산화 과정 중 천연산화방지성분의 변화)

  • Choi, Hyun-Ki;Choe, Eun-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.1
    • /
    • pp.14-20
    • /
    • 2010
  • Naturally present antioxidants, tocopherols, carotenoids, and phospholipids in the bran and germ oils from Keumkang (K-WBG oil) and Dark Northern Spring wheats (DNS-WBG oil) were determined during storage under 1700 lux light at $5^{\circ}C$ by HPLC. Oil oxidation was monitored by peroxide values (POV) and conjugated dienoic acid content. The results showed that antioxidants were degraded during storage of the WBG oils under light, with higher degradation rates for carotenoids and phospholipids in the K-WBG oil compared to the DNS-WBG oil. Light increased oil oxidation and the rate of oxidation was higher in K-WBG oil than in the DNS-WBG oil. There was a high correlation between POV and residual amounts of antioxidants during photo-oxidation, with phospholipids showing the greatest effects on POV. This study suggests that a higher amount and lower degradation rate of phospholipids in the DNS-WBG oil contributed to its higher photo-oxidative stability compared to the K-WBG oil.

A Study on Dissolve and Remove Analysis of Pollutants in Drinking Water by Suspected Cancer Causing Organic Chemicals using AOPs (Advanced Oxidation Processes) & M/F Hybird Process (고도산화와 정밀여과막 혼성공정을 이용한 먹는 물에 존재하는 발암원인으로 의심되는 유기화학성분의 분해 및 제거분석에 관한 연구)

  • An, Tai-Young;Park, Mi-young;Hur, Jang-hyun;Jun, Sang-ho;Han, Mi-Ae;An, Yoon-Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.2
    • /
    • pp.193-200
    • /
    • 2007
  • The AOPs research defined by creating a sufficient amount of OH radicals from the dissolution of organic materials through photoxidation and research for a complete elimination of residual organic materials by membrane are actively ongoing. This research focuses on the hybrid processing of AOPs and M/F membrane to dissolve and eliminate organic chemicals in drinking water which are suspected of carcinogens. For this purpose, underground water was used as a source of drinking water for the hybrid processing of AOPs oxidation and M/F membrane, and a pilot plant test device was installed indoor. Carcinogenic chemicals of VOCs and pesticide were artificially mixed with the drinking water, which was then diluted close to natural water in order to examine treatment efficiency and draw optimal operation conditions. The samples used for this experiment include four chemicals phenol, chloroform, in VOCs and parathion, carbaryl in pesticide. As a result of the experiments conducted with simple, and compound solutions, the conditions to sufficiently dissolve and eliminate carcinogenic chemicals from the hybrid processing of where carcinogens were artificially added are : (hydrogen peroxide) prescribed solution 100 mg/L under pH 5.5~6.0, and the temperature $12{\sim}16^{\circ}C$, at the normal temperature and pressure. $d-O_3$ volume of 5.0 ppm and above and 30-40 minutes of reaction time are most appropriate and using MF/UF for membrane was ideal.

Assessment of Antioxidant Activity and Residue Level of Phenolic Antioxidants in Autoxidation of Linoleic Acid (리놀레인산 자동산화에 미치는 페놀계 산화방지제의 활성 및 잔존량 평가)

  • Choi, Seung-Hyun;Kim, Jae-Min;Choi, Sun-Il;Jung, Tae-Dong;Oh, Ji-Won;Cho, Bong-Yeon;Lee, Jin-Ha;Lee, Ok-Hwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.7
    • /
    • pp.1065-1070
    • /
    • 2016
  • This study assessed the antioxidant activity and residue level of phenolic antioxidants in autoxidation of linoleic acid. The antioxidant activity of phenolic antioxidants was measured based on peroxide value of linoleic acid at $50^{\circ}C$ for 8 days. We further evaluated the residue level of phenolic antioxidants in the autoxidation period by HPLC-UV. The residue level of antioxidants changed with time starting on day 0 (100%) and was determined by 100-remaining of antioxidants (%). Our results showed that peroxide values ranged from 0.33 to 10.18 meq/kg in propyl gallate, from 0.67 to 11.01 meq/kg in dodecyl gallate, from 0.01 to 10.34 meq/kg in octyl gallate, from 0.01 to 4.17 meq/kg in butylated hydroxytoluene (BHT), from 1.00 to 5.85 meq/kg in butylated hydroxyanisole (BHA), from 0.33 to 4.18 meq/kg in 2,4,5-trihydroxybutyrophenone, and from 1.00 to 11.01 meq/kg in tert-butylhydroquinone (TBHQ). Among the residue levels of antioxidants, on day 8, BHT showed the highest level while TBHQ showed the lowest. BHT showed the highest correlation coefficient, whereas BHA showed the lowest. This study proves that the residual level of phenolic antioxidants has a good correlation with the degree of autoxidation in linoleic acid.

Residual Nitrite and Rancidity of Dry Pork Meat Products -A Rancidity and Storability of Home-made Dry Sausage and Dry Ham and Public Taste of Dry Ham- (돈육가공저장식품(豚肉加工貯藏食品)의 Nitrite 잔존량(殘存量)과 지방산패(脂肪酸敗) -가내제조(家內製造)한 Dry Sausage와 Dry Ham의 지방산패(脂肪酸敗) 및 저장성(貯藏性)과 Dry Ham의 기호도에(嗜好度)에 관(關)하여-)

  • Woo, Soon-Ja;Maeng, Young-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.6-11
    • /
    • 1983
  • The long-term storability of home-made dry sausage and ham in terms of peroxide value and thiobarbituric acid value, the effects of nitrite and NaCl contents on the deterioration of the products and the public acceptance of dry ham were studied. The results of this study are as follows: 1. Because the storability of the dried meat products is mainly affected by the fat rancidity of the fat content, POV of 10 was assumed the critical point of storability. The sample dry sausage used in this experiment has lost its storability within a ripening period of 5 weeks. And dry ham was lost its peculiar relish within 50 days. 2. The variations of the NaCl contents of the dry products were reflected in the ripening process. The correlation coefficient between the variations of the NaCl contents and the decrease in the weight of the dry ham was 0.85. 3. The survey of public taste for dry ham was conducted on 35 college students, who think it a bit tasteful or tasteless account for 66% of the total and those who think it a simple relish account for 60%, thus indicating that the dry ham still remains far away from the dining table.

  • PDF

A Study on the Modified Fenton Oxidation of MTBE in Groundwater with Permeable Reactive Barrier using Waste Zero-valent Iron (폐영가철 투수성반응벽체를 이용한 Modified Fenton 산화에 의한 MTBE 처리연구)

  • Moon, So-Young;Oh, Min-Ah;Lee, Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.2
    • /
    • pp.15-21
    • /
    • 2012
  • MTBE (Methyl tertiary-butyl ether) has been commonly used as an octane enhancer to replace tetraethyl lead in gasoline, because MTBE increases the efficiency of combustion and decreases the emission of carbon monoxide. However, MTBE has been found in groundwater from the fuel spills and leaks in the UST (Underground Storage Tank). Fenton's oxidation, an advanced oxidation catalyzed with ferrous iron, is successful in removing MTBE in groundwater. However, Fenton's oxidation requires the continuous addition of dissolved $Fe^{2+}$. Zero-valent iron is available as a source of catalytic ferrous iron of MFO (Modified Fenton's Oxidation) and has been studied for use in PRBs (Permeable Reactive Barriers) as a reactive material. Therefore, this study investigated the condition of optimization in MFO-PRBs using waste zero-valent iron (ZVI) with the waste steel scrap to treat MTBE contaminated groundwater. Batch tests were examined to find optimal molar ratio of MTBE : $H_2O_2$ on extent to degradation of MTBE in groundwater at pH 7 with 10% waste ZVI. As the results, the ratio of optimization of MTBE to hydrogen peroxide for MFO was determined to be 1:300[mM]. The column experiment was conducted to know applicability of MFO-PRBs for MTBE remediation in groundwater. As the results of column test, MTBE was removed 87% of the initial concentration during 120days of operational period. Interestingly, MTBE was degraded not only within waste ZVI column but also within sand column. It means the aquifer may affect continuously the MTBE contaminated groundwater after throughout the waste ZVI barrier. The residual products showed acetone, TBF (Tert-butyl formate) and TBA (Tert-butyl acetate) during this test. The results of the present study showed that the recycled materials can be effectively used for not only a source of catalytic ferrous iron but also a reactive material of the MFO-PRBs to remove MTBE in groundwater.

Use-friendly Active Packaging of Powdered Infant Formula in Single-serve Portion Augmented with Anti-oxidative Function (산화억제 가능성과 사용편의성을 가진 일회성 조제분유 포장)

  • Lee, Hye Lim;An, Duck Soon;Lee, Dong Sun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.25 no.3
    • /
    • pp.95-99
    • /
    • 2019
  • In the modified atmosphere packaging of powdered infant formula, the oxygen inside the package may cause its quality deterioration and needs to be minimized for quality preservation. A way of oxygen scavenger inclusion in the single-serve package without contacting the product was devised for removing oxygen residing initially and permeating through the seal layer during the storage. A polyethylene/pulp multi-layer porous filter bag of 5 × 7 cm containing 13 g of powdered infant formula was packaged in an 8 × 9 cm size aluminium laminated film package with a Fe-based oxygen scavenger of 1.8 g. After nitrogen flushed packaging, the active packages were stored at 30℃ for 254 days with periodical quality measurement. The active package could remove the initial residual oxygen of 1.4% completely and maintain absence of oxygen for the whole storage, which contributed to reduced oxidation observed in lower product peroxide value compared to that of the product in the control package. There was no influence of packaging treatment on content of 5-hydroxymethylfurfural, reaction product of initial nonenzymatic browning. The devised oxygen-scavenging single-serve package showed a potential to improve the preservation of infant formula powder and extend the shelf life.

Effects of an In-package Oxygen Scavenger on the Stability of Deep-fried Instant Noodle (인스탄트 라면의 안정성(安定性)에 대한 탈산소제(脫酸素劑)의 효과(效果))

  • Ma, Sang-Jo;Kim, Dong-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.229-234
    • /
    • 1980
  • Deep-fried instant noodle was prepared on a laboratory scale (150 units). A part of the noodle was packed in gas-proof laminated film bags with a small package of an oxygen scavenger made from Fe-powder and a 150 ml of air in each bag(Sample 1). Another part was packed in ordinary laminated film bags (Control), and the rest was vacuum-packed (74 mmHg) in the gas-proof film bags (Sample 2). All samples were placed in an incubator kept at $45.0{\pm}0.5^{\circ}C$ for 45 days. Oxygen-removing power of the scavenger, and peroxide and thiobarbituric acid values of the samples were determined regulary. The results of the study are as follows: 1. The residual oxygen concentration of the bags in Sample 1 decreased from the original 21% to less than 0. 5% after 48 hr. 2. POVs of Control, Samples 1 and 2 after 45 days were $12.4{\pm}0.4$, $5.7{\pm}0.2$ and $6.8{\pm}0.1\;meq/㎏$ fat respectively. It was noteworthy that the POV of Sample 1 did not change significantly during the storage period. The scavenger seemed very effective in retarding the POV development of Sample 1. 3. TBA values of Control, Sample 1 and 2 after 45 days were $1.31{\pm}0.04$, $0.60{\pm}0.04$, and $0.72{\pm}0.07$. As in the case of POVs, the samples packed with the scavengers exhibited consistently smaller TBA values than the vacuum-packed samples in later stages of the storage period.

  • PDF

Thermooxidative Stability of Soybean Oil, Beef Tallow and Palm Oil during Frying of Steamed Noodles (증숙면 튀김 과정 중 대두유, 우지, 팜유의 가열 산화 안정성)

  • Choe, Eun-Ok;Lee, Jin-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.288-292
    • /
    • 1998
  • Thermooxidative stabilities of soybean oil, beef tallow and palm oil were studied during frying of steamed noodles. Steamed noodles were fried in $150^{\circ}C$ oils for 70 sec at the interval of 30 min. The frying oil was taken every 8 hrs for the analysis of peroxide value (PV) and free fatty acid (FFA) content, fatty acid composition, and tocopherol and tocotrienol content. A little change was shown in PV and FFA content in soybean oil during frying; on the other hand, rapid increase in beef tallow and palm oil was observed. Unsaturated fatty acid content was the highest in soybean oil, followed by palm oil and beef tallow. While fatty acid composition in soybean oil was not changed during frying, unsaturated fatty acid content decreased and saturated fatty acid increased in beef tallow and palm oil, which showed susceptibility to the oxidation. The ratio of linoleic acid to palmitic acid did not show difference with frying time in soybean oil: however, it decreased in other oils with a high correlation with frying time and higher decreasing rate in palm oil was observed. These suggested that soybean oil was the most stable to thermooxidation and the stability was followed by beef tallow and palm oil. Tocopherol was disappeared during frying and 87.5, 81.1, and 73.1% were remained in soybean oil after 8, 16 and 24 hour frying, respectively. Also the rate decreased in the order of ${\gamma}-,\;{\beta}-\;and\;{\alpha}-tocopherol$. However, 34.2 and 169.0 ppm tocopherol and tocotrienol which were present in control samples of beef tallow and palm oil were completely disappeared by 8 hr frying. Therefore, high thermooxidative stability of soybean oil resulted from higher residual amount of tocopherol during frying, and lower stability of palm oil than beef tallow was partly due to high degree of unsaturation.

  • PDF