• 제목/요약/키워드: Residual Network (ResNet)

검색결과 32건 처리시간 0.021초

A Hybrid Optimized Deep Learning Techniques for Analyzing Mammograms

  • Bandaru, Satish Babu;Deivarajan, Natarajasivan;Gatram, Rama Mohan Babu
    • International Journal of Computer Science & Network Security
    • /
    • 제22권10호
    • /
    • pp.73-82
    • /
    • 2022
  • Early detection continues to be the mainstay of breast cancer control as well as the improvement of its treatment. Even so, the absence of cancer symptoms at the onset has early detection quite challenging. Therefore, various researchers continue to focus on cancer as a topic of health to try and make improvements from the perspectives of diagnosis, prevention, and treatment. This research's chief goal is development of a system with deep learning for classification of the breast cancer as non-malignant and malignant using mammogram images. The following two distinct approaches: the first one with the utilization of patches of the Region of Interest (ROI), and the second one with the utilization of the overall images is used. The proposed system is composed of the following two distinct stages: the pre-processing stage and the Convolution Neural Network (CNN) building stage. Of late, the use of meta-heuristic optimization algorithms has accomplished a lot of progress in resolving these problems. Teaching-Learning Based Optimization algorithm (TIBO) meta-heuristic was originally employed for resolving problems of continuous optimization. This work has offered the proposals of novel methods for training the Residual Network (ResNet) as well as the CNN based on the TLBO and the Genetic Algorithm (GA). The classification of breast cancer can be enhanced with direct application of the hybrid TLBO- GA. For this hybrid algorithm, the TLBO, i.e., a core component, will combine the following three distinct operators of the GA: coding, crossover, and mutation. In the TLBO, there is a representation of the optimization solutions as students. On the other hand, the hybrid TLBO-GA will have further division of the students as follows: the top students, the ordinary students, and the poor students. The experiments demonstrated that the proposed hybrid TLBO-GA is more effective than TLBO and GA.

Respiratory Motion Correction on PET Images Based on 3D Convolutional Neural Network

  • Hou, Yibo;He, Jianfeng;She, Bo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권7호
    • /
    • pp.2191-2208
    • /
    • 2022
  • Motion blur in PET (Positron emission tomography) images induced by respiratory motion will reduce the quality of imaging. Although exiting methods have positive performance for respiratory motion correction in medical practice, there are still many aspects that can be improved. In this paper, an improved 3D unsupervised framework, Res-Voxel based on U-Net network was proposed for the motion correction. The Res-Voxel with multiple residual structure may improve the ability of predicting deformation field, and use a smaller convolution kernel to reduce the parameters of the model and decrease the amount of computation required. The proposed is tested on the simulated PET imaging data and the clinical data. Experimental results demonstrate that the proposed achieved Dice indices 93.81%, 81.75% and 75.10% on the simulated geometric phantom data, voxel phantom data and the clinical data respectively. It is demonstrated that the proposed method can improve the registration and correction performance of PET image.

Indoor Environment Drone Detection through DBSCAN and Deep Learning

  • Ha Tran Thi;Hien Pham The;Yun-Seok Mun;Ic-Pyo Hong
    • 전기전자학회논문지
    • /
    • 제27권4호
    • /
    • pp.439-449
    • /
    • 2023
  • In an era marked by the increasing use of drones and the growing demand for indoor surveillance, the development of a robust application for detecting and tracking both drones and humans within indoor spaces becomes imperative. This study presents an innovative application that uses FMCW radar to detect human and drone motions from the cloud point. At the outset, the DBSCAN (Density-based Spatial Clustering of Applications with Noise) algorithm is utilized to categorize cloud points into distinct groups, each representing the objects present in the tracking area. Notably, this algorithm demonstrates remarkable efficiency, particularly in clustering drone point clouds, achieving an impressive accuracy of up to 92.8%. Subsequently, the clusters are discerned and classified into either humans or drones by employing a deep learning model. A trio of models, including Deep Neural Network (DNN), Residual Network (ResNet), and Long Short-Term Memory (LSTM), are applied, and the outcomes reveal that the ResNet model achieves the highest accuracy. It attains an impressive 98.62% accuracy for identifying drone clusters and a noteworthy 96.75% accuracy for human clusters.

3D Object Generation and Renderer System based on VAE ResNet-GAN

  • Min-Su Yu;Tae-Won Jung;GyoungHyun Kim;Soonchul Kwon;Kye-Dong Jung
    • International journal of advanced smart convergence
    • /
    • 제12권4호
    • /
    • pp.142-146
    • /
    • 2023
  • We present a method for generating 3D structures and rendering objects by combining VAE (Variational Autoencoder) and GAN (Generative Adversarial Network). This approach focuses on generating and rendering 3D models with improved quality using residual learning as the learning method for the encoder. We deep stack the encoder layers to accurately reflect the features of the image and apply residual blocks to solve the problems of deep layers to improve the encoder performance. This solves the problems of gradient vanishing and exploding, which are problems when constructing a deep neural network, and creates a 3D model of improved quality. To accurately extract image features, we construct deep layers of the encoder model and apply the residual function to learning to model with more detailed information. The generated model has more detailed voxels for more accurate representation, is rendered by adding materials and lighting, and is finally converted into a mesh model. 3D models have excellent visual quality and accuracy, making them useful in various fields such as virtual reality, game development, and metaverse.

A Novel Transfer Learning-Based Algorithm for Detecting Violence Images

  • Meng, Yuyan;Yuan, Deyu;Su, Shaofan;Ming, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권6호
    • /
    • pp.1818-1832
    • /
    • 2022
  • Violence in the Internet era poses a new challenge to the current counter-riot work, and according to research and analysis, most of the violent incidents occurring are related to the dissemination of violence images. The use of the popular deep learning neural network to automatically analyze the massive amount of images on the Internet has become one of the important tools in the current counter-violence work. This paper focuses on the use of transfer learning techniques and the introduction of an attention mechanism to the residual network (ResNet) model for the classification and identification of violence images. Firstly, the feature elements of the violence images are identified and a targeted dataset is constructed; secondly, due to the small number of positive samples of violence images, pre-training and attention mechanisms are introduced to suggest improvements to the traditional residual network; finally, the improved model is trained and tested on the constructed dedicated dataset. The research results show that the improved network model can quickly and accurately identify violence images with an average accuracy rate of 92.20%, thus effectively reducing the cost of manual identification and providing decision support for combating rebel organization activities.

딥 residual network를 이용한 선생-학생 프레임워크에서 힌트-KD 학습 성능 분석 (Performance Analysis of Hint-KD Training Approach for the Teacher-Student Framework Using Deep Residual Networks)

  • 배지훈;임준호;유재학;김귀훈;김준모
    • 전자공학회논문지
    • /
    • 제54권5호
    • /
    • pp.35-41
    • /
    • 2017
  • 본 논문에서는 지식추출(knowledge distillation) 및 지식전달(knowledge transfer)을 위하여 최근에 소개된 선생-학생 프레임워크 기반의 힌트(Hint)-knowledge distillation(KD) 학습기법에 대한 성능을 분석한다. 본 논문에서 고려하는 선생-학생 프레임워크는 현재 최신 딥러닝 모델로 각광받고 있는 딥 residual 네트워크를 이용한다. 따라서, 전 세계적으로 널리 사용되고 있는 오픈 딥러닝 프레임워크인 Caffe를 이용하여 학생모델의 인식 정확도 관점에서 힌트-KD 학습 시 선생모델의 완화상수기반의 KD 정보 비중에 대한 영향을 살펴본다. 본 논문의 연구결과에 따르면 KD 정보 비중을 단조감소하는 경우보다 초기에 설정된 고정된 값으로 유지하는 것이 학생모델의 인식 정확도가 더 향상된다는 것을 알 수 있었다.

Land Use and Land Cover Mapping from Kompsat-5 X-band Co-polarized Data Using Conditional Generative Adversarial Network

  • Jang, Jae-Cheol;Park, Kyung-Ae
    • 대한원격탐사학회지
    • /
    • 제38권1호
    • /
    • pp.111-126
    • /
    • 2022
  • Land use and land cover (LULC) mapping is an important factor in geospatial analysis. Although highly precise ground-based LULC monitoring is possible, it is time consuming and costly. Conversely, because the synthetic aperture radar (SAR) sensor is an all-weather sensor with high resolution, it could replace field-based LULC monitoring systems with low cost and less time requirement. Thus, LULC is one of the major areas in SAR applications. We developed a LULC model using only KOMPSAT-5 single co-polarized data and digital elevation model (DEM) data. Twelve HH-polarized images and 18 VV-polarized images were collected, and two HH-polarized images and four VV-polarized images were selected for the model testing. To train the LULC model, we applied the conditional generative adversarial network (cGAN) method. We used U-Net combined with the residual unit (ResUNet) model to generate the cGAN method. When analyzing the training history at 1732 epochs, the ResUNet model showed a maximum overall accuracy (OA) of 93.89 and a Kappa coefficient of 0.91. The model exhibited high performance in the test datasets with an OA greater than 90. The model accurately distinguished water body areas and showed lower accuracy in wetlands than in the other LULC types. The effect of the DEM on the accuracy of LULC was analyzed. When assessing the accuracy with respect to the incidence angle, owing to the radar shadow caused by the side-looking system of the SAR sensor, the OA tended to decrease as the incidence angle increased. This study is the first to use only KOMPSAT-5 single co-polarized data and deep learning methods to demonstrate the possibility of high-performance LULC monitoring. This study contributes to Earth surface monitoring and the development of deep learning approaches using the KOMPSAT-5 data.

자동 암종 분류를 위한 딥러닝 영상처리 기법의 적용성 검토 연구 (A Feasibility Study on Application of a Deep Convolutional Neural Network for Automatic Rock Type Classification)

  • 추엔 팜;신휴성
    • 터널과지하공간
    • /
    • 제30권5호
    • /
    • pp.462-472
    • /
    • 2020
  • 암종 분류은 현장의 지질학적 또는 지반공학적 특성 파악을 위해 요구되는 매우 기본적인 행위이나 암석의 성인, 지역, 지질학적 이력 특성에 따라 동일 암종이라 하여도 매우 다양한 형태와 색 조성을 보이므로 깊은 지질학적 학식과 경험 없이는 쉬운 일은 아니다. 또한, 다른 여러 분야의 분류 작업에서 딥러닝 영상 처리 기법들이 성공적으로 적용되고 있으며, 지질학적 분류나 평가 분야에서도 딥러닝 기법의 적용에 대한 관심이 증대되고 있다. 따라서, 본 연구에서는 동일 암종임에도 다양한 형태와 색을 갖게 되는 실제 상황을 감안하여, 정확한 자동 암종 분류를 위한 딥러닝 기법의 적용 가능성에 대해 검토하였다. 이러한 기법은 향후에 현장 암종분류 작업을 수행하는 현장 기술자들을 지원할 수 있는 효과적인 툴로 활용 가능할 것이다. 본 연구에서 사용된 딥러닝 알고리즘은 매우 깊은 네트워크 구조로 객체 인식과 분류를 할 수 있는 것으로 잘 알려진 'ResNet' 계열의 딥러닝 알고리즘을 사용하였다. 적용된 딥러닝에서는 10개의 암종에 대한 다양한 암석 이미지들을 학습시켰으며, 학습 시키지 않은 암석 이미지들에 대하여 84% 수준 이상의 암종 분류 정확도를 보였다. 본 결과로 부터 다양한 성인과 지질학적 이력을 갖는 다양한 형태와 색의 암석들도 지질 전문가 수준으로 분류해 낼 수 있는 것으로 파악되었다. 나아가 다양한 지역과 현장에서 수집된 암석의 이미지와 지질학자들의 분류 결과가 학습데이터로 지속적으로 누적이 되어 재학습에 반영된다면 암종분류 성능은 자동으로 향상될 것이다.

청각장애인용 자막방송 서비스를 위한 연쇄잔차 신경망 기반 음향 사건 분류 기법 (Sound Event Classification Based on Concatenated Residual Network Applicable to Closed Captioning Services for the Hearing Impaired)

  • 김남균;박동건;김준호;김홍국;안충현
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 하계학술대회
    • /
    • pp.472-475
    • /
    • 2020
  • 본 논문에서는 청각장애인에게 자막방송을 제공하기 위하여 오디오 콘텐츠에 등장하는 음향 사건을 분류하는 기법을 제안한다. 제안된 기법은 복수의 잔차 신경망(ResNet)을 연결하는 연쇄잔차(concatenated residual) 신경망 구조를 갖는다. 신경망의 입력 특징을 위해 음성의 멜-주파수 켑스트럼 벡터를 다수의 프레임으로 결합하여 형성한 2 차원 이미지와 전체 프레임에 대한 멜-주파수 켑스트럼 벡터들로부터 얻은 1 차원의 통계 특징벡터를 얻는다. 각각의 입력은 2 차원 잔차 신경망과 1 차원 잔차 신경망으로 모델링되고, 두 개의 잔차 신경망을 연쇄연결(concatenation)하는 구조를 가진 연쇄잔차 신경망으로 구성된다. 성능평가를 위해 수집된 데이터셋으로부터 6-fold 교차검증을 통해 평가한 결과, 85.48%의 분류 정확도를 얻을 수 있었다.

  • PDF

Triplet Loss 기반 딥러닝 모델을 통한 유사 아동 그림 선별 알고리즘 (A deep learning model based on triplet losses for a similar child drawing selection algorithm)

  • 문지유;김민종;이성옥;유용균
    • 한국산업정보학회논문지
    • /
    • 제27권1호
    • /
    • pp.1-9
    • /
    • 2022
  • 본 논문은 유사 아동 그림 선별 알고리즘 생성을 위한 Triplet Loss 기반 딥러닝 모델설계를 목적으로 한다. 아동 그림들 사이 유사성 측정을 위해서는 동일 클래스에 속하는 그림 간 특징 벡터의 거리는 가까워야 하고 다른 클래스 간 특징 벡터의 거리는 멀어져야 한다. 따라서, 본 연구에서는 클래스 수가 많아지는 경우에 이미지 유사성 측정에 이점을 지닌 Triplet Loss와 잔여 네트워크(ResNet)를 결합한 딥러닝 모델을 구축하여 유사 아동 그림 선별 알고리즘을 생성하였다. 결론적으로 본 모델을 활용한 유사 아동 그림 선별 알고리즘을 통해 대상 아동 그림과 다른 그림 간의 유사성을 측정하고 유사성이 높은 그림을 선별할 수 있다.