• Title/Summary/Keyword: Residual Mono-and Di-saccharides

Search Result 4, Processing Time 0.02 seconds

Effect of Additives on the Fermentation Quality and Residual Mono- and Disaccharides Compositions of Forage Oats (Avena sativa L.) and Italian Ryegrass (Lolium multiflorum Lam.) Silages

  • Shao, Tao;Shimojo, M.;Wang, T.;Masuda, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.11
    • /
    • pp.1582-1588
    • /
    • 2005
  • This study aimed to evaluate the effects of silage additives on the fermentation qualities and residual mono- and disaccharides composition of silages. Forage Oats (Avena sativa L.) and Italian Ryegrass (Lolium multiflorum Lam.) were ensiled with glucose, sorbic acid and pre-fermented juice of epiphytic lactic acid bacteria (FJLB) treatments for 30 days. In both species grass silages, although the respective controls had higher contents of butyric acid (20.86, 33.45g $kg^{-1}$ DM) and ammonia-N/total nitrogen (100.07, 114.91 g $kg^{-1}$) as compared with other treated silages in forage oats and Italian ryegrass, the fermentation was clearly dominated by lactic acid bacteria. This was well indicated by the low pH value (4.27, 4.38), and high lactic acid/acetic acid (6.53, 5.58) and lactic acid content (61.67, 46.85 g $kg^{-1}$ DM). Glucose addition increased significantly (p<0.05) lactic acid/acetic acid, and significantly (p<0.05) decreased the values of pH and ammonia-N/total nitrogen, and the contents of butyric acid and volatile fatty acids as compared with control, however, there was a slightly but significantly (p<0.05) higher butyric acid and lower residual mono- and di-saccharides as compared with sorbic acid and FJLB additions. Sorbic acid addition showed the lowest ethanol, acetic acid and ammonia-N/total nitrogen, and highest contents of residual fructose, total mono- and di-saccharides and dry matter as well as high lactic acid/acetic acid and lactic acid content. FJLB addition had the lowest pH value and the highest lactic acid content, the most intensive lactic acid fermentation occurring in FJLB treated silages. This resulted in the faster accumulation of lactic acid and faster pH reduction. Sorbic acid and FJLB additions depressed clostridia or other undesirable bacterial fermentation, thus this decreased the water-soluble carbohydrates loss and saved the fermentable substrate for lactic acid fermentation.

Fermentation Quality of Italian Ryegrass (Lolium multiflorum Lam.) Silages Treated with Encapsulated-glucose, Glucose, Sorbic Acid and Pre-fermented Juices

  • Shao, Tao;Zhanga, L.;Shimojo, M.;Masuda, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.11
    • /
    • pp.1699-1704
    • /
    • 2007
  • This experiment was carried out to evaluate the effects of adding encapsulated-glucose, glucose, sorbic acid or prefermented juice of epiphytic lactic acid bacteria (FJLB) on the fermentation quality and residual mono- and disaccharide composition of Italian ryegrass (Lolium multiflorum Lam) silages. The additive treatments were as follows: (1) control (no addition), (2) encapsulated-glucose addition at 0.5% for glucose, (3) glucose addition at 1%, (4) sorbic acid addition at 0.1%, (5) FJLB addition at a theoretical application rate of $2.67{\times}10^5$ CFU (colony forming unit) $g^{-1}$, on a fresh weight basis of Italian ryegrass. Although control and encapsulated-glucose treatments had higher contents of butyric acid (33.45, 21.50 g $kg^{-1}$ DM) and ammonia-N/Total nitrogen (114.91, 87.01 g $kg^{-1}$) as compared with the other treated silages, the fermentation in all silages was clearly dominated by lactic acid. This was well indicated by the low pH (4.38-3.59), and high lactic acid/acetic acid (4.39-22.97) and lactic acid content (46.85-121.76 g $kg^{-1}$ DM). Encapsulated-0.5% glucose and glucose addition increased lactic acid/acetic acid, and significantly (p<0.05) decreased ammonia-N/total nitrogen, and the contents of butyric acid and total volatile fatty acids (VFAs) as compared with the control. However, there were higher butyric acid and lower residual mono-and di-saccharides on the two treatments as compared with sorbic acid and FJLB addition, and their utilization efficiency of water soluble carbohydrates (WSC) was lower than that of both sorbic acid and FJLB additions. Sorbic acid addition showed the lowest content of ethanol and ammonia-N/total nitrogen, and the highest content of residual fructose and total mono-and disaccharides as well as the higher lactic acid/acetic acid value. Sorbic acid addition decreased the loss of mono-and disaccharides, and inhibited the activity of clostridial and other undesirable bacteria, and greatly increased the utilization efficiency of fermentable substrates by epiphytic LAB. FJLB addition had the lowest pH value and the highest lactic acid content among all additive treatments, with the most intensive lactic acid fermentation occurring in FJLB treated silage. This resulted in the faster accumulation of lactic acid and faster pH reduction. Sorbic acid and FJLB addition depressed clostridia or other undesirable bacterial fermentation which decreased the WSC loss and saved the fermentable substrate for lactic acid fermentation.

Physical and Biochemical Mechanisms Associated with Beef Carcass Vascular Rinsing Effects on Meat Quality: A Review

  • Hwang, Koeun;Claus, James R.;Jeong, Jong Youn;Hwang, Young-Hwa;Joo, Seon-Tea
    • Food Science of Animal Resources
    • /
    • v.42 no.3
    • /
    • pp.389-397
    • /
    • 2022
  • Carcass vascular rinsing and chilling involves infusing a chilled isotonic solution (98.5% water and a blend of mono- and di-saccharides and phosphates) into the vasculature immediately upon exsanguination. Primary purposes of carcass vascular rinsing are to (1) effectively remove residual blood from the carcass; (2) lower internal muscle temperature rapidly; and (3) optimize pH decline by effective delivery of glycolytic substrates in the rinse solution. Previous studies have revealed that the beef carcass vascular rinsing early postmortem positively affects meat quality, product shelflife, and food safety. Thus, the objective of this review is to provide a more comprehensive understanding of the physical and biochemical mechanisms associated with beef carcass vascular rinsing, focusing on the relationship between quality attributes (CIE L*, a*, b*; chemical states of myoglobin; oxygen consumption and sarcomere length) and muscle metabolic response to various substrate solutions (Rinse & Chill®, fructose, sodium phosphate, and dipotassium phosphate) that stimulate or inhibit the rate of glycolysis early postmortem. In addition, this review discusses the absence of metabolite residues (phosphorus, sodium, and glucose) related to the application of the chilled isotonic solution. This review primarily focuses on beef and as such extending the understanding of the mechanisms and meat quality effects discussed to other species associated with vascular rinsing, in particular pork, may be limited.

Effects of Adding Glucose, Sorbic Acid and Pre-fermented Juices on the Fermentation Quality of Guineagrass (Panicum maximum Jacq.) Silages

  • Shao, Tao;Ohba, N.;Shimojo, M.;Masuda, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.6
    • /
    • pp.808-813
    • /
    • 2004
  • This study was conducted to evaluate the effects of adding glucose (G), sorbic acid (S), pre-fermented juice of epiphytic lactic acid bacteria (FJLB) and their combinations on the fermentation qualities and residual mono-and di-saccharides compositions of guineagrass silage. The additives used in this experiment were 1% glucose, 0.1% sorbic acid and FJLB at a theoretical application rate of 9.0${\times}$105 CFU $g^{-1}$ on the fresh weight basis of guineagrass, respectively. There was a total of eight treatments in this experiment: (1) C (without additives), (2) FJLB, (3) S, (4) G, (5) FJLB+S, (6) FJLB+G, (7) S+G, (8) FJLB+S+G. After 30 days of storage, the silos were opened for chemical analyses. Based on the results, all additives were efficient in improving the fermentation quality of guineagrass silage. This was well indicated by significantly (p<0.05) lower pH and BA content and significantly (p<0.05) higher LA content in the treated silages except for the FJLB than in the C. However, there was only a slight increase in LA for the FJLB as compared with the C, which might be due to the low WSC content of the original guineagrass (34.4 g $kg^{-1}$). When the FJLB+S and FJLB+G were added, there were significant (p<0.05) decreases in pH and significant (p<0.05) increases in LA as compared with the FJLB alone. This indicated that the G, S and FJLB were of synergestic effects on the silage fermentation quality. The G combination treatments including the G alone showed large improvements in the fermentation quality as compared with the treatments without the G. This suggested that adding fermentable substrates (G) to plant materials such as guineagrass, which contain low WSC, intermediate population of epiphytic LAB, CP and DM content, is more important and efficient for improving the fermentation quality of silages than adding a number of species of domestic LAB (FJLB) and aerobic bacteria inhibitor (S).