• Title/Summary/Keyword: Residential Energy Consumption

Search Result 188, Processing Time 0.031 seconds

Development of Bottom-up model for Residential Energy Consumption by Use (생활행위 분류에 의한 가정부문 용도별 에너지소비 분석모형 개발)

  • Lim, Ki Choo
    • Journal of Energy Engineering
    • /
    • v.22 no.1
    • /
    • pp.38-43
    • /
    • 2013
  • There was a dire need to compile data about energy consumption data by use to analyze residential energy consumption patterns relating to changes in lifestyles, or changes in life behavior. Accordingly, bottom-up model for residential energy consumption by residential use was developed by life behavior classification in an attempt to analyze energy consumption. This paper multiplied each appliance's running times by each appliance by life behavior and built a residential bottoms-up model to figure out the energy consumption of each household. The uses by life behavior were broken down into lighting, heating, cooling, entertainment, obtaining information, hygiene, and cooking.

Trend Study on Research for Energy Consumption and Saving Method in Residential Sector of Japan (일본의 민생주택부문 에너지소비 및 절약기술관련 연구 개발동향)

  • Yoo, Jung-Hyun;Yuasa, Kazuhiro;Kim, Yong-Sick
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.819-824
    • /
    • 2008
  • Energy consumption in Korea and Japan has already progressed to high level. Especially, it will be important to take up the effort to achieve further energy savings in residential sector that has significant increase both nations. For this reason, research for energy consumption and saving method in residential sector compare Korea with Japan that of similar data to grasps the direction for energy savings. In addition for introduction of distributed energy system to residential sector, such as apartment house, the electricity and gas demand was simulated. To be more specific, several key characteristics were studied, such as housing type housing scale and width of common space.

  • PDF

The Economic Value of Residential Electricity Consumption in Seoul

  • Yoo, Seung-Hoon;Lee, Seung-Ryul
    • Journal of Energy Engineering
    • /
    • v.21 no.1
    • /
    • pp.81-85
    • /
    • 2012
  • Electricity is the basic building block of economic development, and constitutes one of the vital infra-structural inputs in socio-economic development. The demand for electricity has been increasing due to extensive urbanization, industrialization, and a rise in the standard of living, as is the case with residential electricity consumption. This paper attempts to estimate the consumer surplus and the economic value of the residential consumption of electricity in Seoul to assist in decision-making in electricity management. The estimated consumer surplus represents the value of the area under the demand curve, above the actual price that is paid for residential electricity consumption. The estimated annual consumer surplus and economic value for the year 2005 amount to 2,144.7 and 3,727.4 billion won, respectively. The estimates per kWh were 184.9 and 316.0 won, respectively, which imply that the consumer surplus and the economic value of residential electricity consumption significantly outweigh the average price of electricity in 2005 of 91.1 won per kWh.

The Analysis on Energy Efficiency in the Residential Sector (가정부문 에너지 효율 분석)

  • Na, In-Gang;Lee, Sung-Keun
    • Environmental and Resource Economics Review
    • /
    • v.19 no.1
    • /
    • pp.129-157
    • /
    • 2010
  • This paper is intended to evaluate energy efficiency policy in demand side, to assess the residential sector's energy efficiency policy and to analyze the system of energy efficiency practices. We examined residential energy consumption over the period 1990~2006. The decomposition method in the analysis was a logarithmic mean Divisia index (LMDI) techniques to decompose changes in energy intensity. First of all, the energy use in residential sector was adjusted to correct weather-induced variations in energy consumption, because adjustments for normal weather patterns facilitated inter-temporal comparison of intensity. The analysis on the residential sector shows that the overall energy intensity of the residential sector declined at an average 1.0% per year, while the structure effect increased by 1.8% per year, and the activity effect increased by 0.7% per year. In other words, the decline of floor space, number of household, and appliance ownership per capita has an effect on increase in residential consumption. The improvement in energy efficiency had strong contribution on the decrease of energy consumption. We find that the general results of analysis on residential energy are similar to those of IEA. The energy efficiency policy in residential sector is assessed to obtain some results during 1990~2006. In residential sector, structural variables such population per household, diffusion of appliance and activity factor such as population contributed to the increase of energy consumption while energy intensity effect induced the decrease of energy consumption. These findings are consistent with international trend as well as our prior expectation.

  • PDF

Economic Analysis of Various Residential Geothermal Heat Pump System Capacities (주택용 지열히트펌프 시스템의 용량 변화에 대한 경제성 비교 분석)

  • Lee, Chung-Kook;Suh, Seung-Jik;Kim, Jin-Sang
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.7 no.2
    • /
    • pp.1-9
    • /
    • 2011
  • Geothermal heat pumps are known as the most efficient and environment-friendly heating and cooling system, and are also gaining acceptance in buildings. Building energy simulation program, EnergyPlus is used to calculate the energy consumption of residential buildings. This simulated energy consumption is essential for accurate economic analysis. Residential buildings with geothermal heat pumps have complex energy price structure. Electricity rates for residential buildings increase rapidly as the monthly use increases. This complex energy price structure makes the economic analysis complicated. The purpose of this study is to conduct economic comparison of residential geothermal heat pumps and provide a feasible approach in finding their economically feasible capacity.

Characteristics of Electric-Power Use in Residential Building by Family Composition and Their Income Level (거주자 구성유형 및 소득수준에 따른 주거용 건물 내 전력소비성향)

  • Seo, Hyun-Cheol;Hong, Won-Hwa;Nam, Gyeong-Mok
    • Journal of the Korean housing association
    • /
    • v.23 no.6
    • /
    • pp.31-38
    • /
    • 2012
  • In this paper, we draws tendency of the electricity consumption in residential buildings according to inhabitants Composition types and the level of incomes. it is necessary to reduce energy cost and keep energy security through the electricity demand forecasting and management technology. Progressive social change such as increases of single household, the aging of society, increases in the income level will replace the existing residential electricity demand pattern. However, Only with conventional methods that using only the energy consumption per-unit area are based on Energy final consumption data can not respond to those social and environmental change. To develop electricity demand estimation model that can cope flexibly to changes in the social and environmental, In this paper researches propensity of electricity consumption according to the type of residents configuration, the level of income. First, we typed form of inhabitants in residential that existed in Korea. after that we calculated hourly electricity consumption for each type through National Time-Use Survey performed at the National Statistical Office with considering overlapping behavior. Household appliances and retention standards according to income level is also considered.

An Analysis of Demand for Environmental Controls on Different Residential Building Types (주거용 건물의 유형에 따른 환경조절요구에 대한 분석)

  • Leigh Seung-Bok;Won Jong-Seo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.10
    • /
    • pp.960-968
    • /
    • 2004
  • One of the most important functions of a building is to provide thermally comfortable indoor environmental conditions for the occupants. Therefore, a great deal of energy is consumed for heating and cooling to satisfy those thermal requirements. In order to provide thermal comfort with minimum heating and cooling energy consumption, optimal design of building affecting indoor climate is required. This study used the TRNSYS for modeling and simulation of the energy flows of residential building types, and examined the energy efficient measures to reduce the thermal loads. The residential building types are classified into the detached house, apartment house and high-rise residential complex. The results of the simulation show that the heating energy consumption in the detached house is especially high, whereas the cooling load is an important determinant in the apartment house and high-rise residential complex. The measures examined are the insulation thickness, various types of glazing, infiltration, natural and controlled ventilation, solar shading, orientation and etc. Comparative evaluations and sensitivity analyses revealed the effects of these variables and identified their energy efficient building design strategies.

Analysis of residential natural gas consumption distribution function in Korea - a mixture model

  • Kim, Ho-Young;Lim, Seul-Ye;Yoo, Seung-Hoon
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.36-41
    • /
    • 2014
  • The world's overall need for natural gas (NG) has been growing up fast, especially in the residential sector. The better the estimation of residential NG consumption (RNGC) distribution, the better decision-making for a residential NG policy such as pricing, demand estimation, management options and so on. Approximating the distribution of RNGC is complicated by zero observations in the sample. To deal with the zero observations by allowing a point mass at zero, a mixture model of RNGC distributions is proposed and applied. The RNGC distribution is specified as a mixture of two distributions, one with a point mass at zero and the other with full support on the positive half of the real line. The model is empirically verified for household RNGC survey data collected in Korea. The mixture model can easily capture the common bimodality feature of the RNGC distribution. In addition, when covariates were added to the model, it was found that the probability that a household has non-expenditure significantly varies with some variables. Finally, the goodness-of-fit test suggests that the data are well represented by the mixture model.

Home Energy Management System for Residential Customer: Present Status and Limitation

  • Lee, Sunguk;Park, Byungjoo
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.284-291
    • /
    • 2018
  • As environmental pollution has become worse green technologies to replace or reduce consumption of fossil fuel get spotlight from government, industry and academia globally. It is reported that 40% of carbon dioxide emission is caused by electricity power generation. And 37% of end user electricity power is used by residential costumer in US. Smart Grid is considered as one of promising technology to alleviate severe environmental problem. In residential environment, Home Energy Management System (HEMS) can play a key role for green smart home. The HEMS can give several benefits like aslowering electric utility bill, improvement of efficiency of electric power consumption and integration of generator using renewable energy resources. However just limited functions of HEMS can be used for residential customer in real life because of lack of smart function in home appliances and optimal managing software for HEMS. This study provides comprehensive analysis for Home Energy Management System for residential customer. Simple HEMS system with real products on the market are explained and limitation of current HEMS are also discussed.

Analysis of the Part Load Ratio Characteristics and Gas Energy Consumption of a Hot Water Boiler in a Residential Building under Korean Climatic Conditions (국내 기상조건하 주거용 건물 가스 보일러의 부분부하 특성과 에너지 사용량 분석)

  • Yu, Byeong Ho;Seo, Byeong-Mo;Moon, Jin-Woo;Lee, Kwang Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.9
    • /
    • pp.455-462
    • /
    • 2015
  • Residential buildings account for a significant portion of the total building-energy usage in Korea, and a variety of research studies on the domestic boiler have therefore been carried out; however, most of these studies examined the boiler itself, whereby the part-load ratio characteristics and the corresponding gas-energy consumption patterns were not analyzed. In this study, the part-load ratio and operating characteristics of a domestic gas boiler were analyzed within a residential building equipped with a radiant floor-heating system; in addition, the energy consumption between condensing and conventional boilers was comparatively analyzed. Our results show that significant portions of the total operating hours, heating load, and energy consumption are in the part-load ratio range of 0 through 40%, whereby the energy consumption was significantly affected by the boiler efficiency under low part-load conditions. These results indicate that the part-load operation of a boiler is an important factor in residential buildings; furthermore, replacing a conventional boiler with a condensing boiler can reduce annual gas-energy usage by more than 20%.