• Title/Summary/Keyword: Reservoir Pressure Core Sampler

Search Result 2, Processing Time 0.015 seconds

Development of PCS and an experiment for performance evaluation (PCS(Pressure Core Sampler) 개발 및 성능평가실험)

  • Lee, Ha-jung;Kim, Hae-jin;Lee, Gye-gwang;Jung, Hyo-seok;Son, In-rak
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.973-980
    • /
    • 2015
  • With their wide geographical distribution, unconventional resources are continuously compared against conventional resources, but their development is expanding because TRRs (Technical Recoverable Resources) are similar to conventional resources. In particular, there is active development of unconventional gas resources such as shale gas, tight gas, CBM (coalbed methane) and gas hydrate. However, it is difficult to calculate the material properties of unconventional resources, especially the gas content, with current geophysical logging technology. Additionally, some overseas companies have monopolies on related equipment and materials. Therefore, this study developed a reservoir PCS (Pressure Core Sampler). It can collect core samples without gaseous loss by maintaining high pressure from the moment the core is sampled and record pressure and temperature in real time. Successful performance testing was also carried out for official verification of the manufactured PCS. The reservoir PCS will contribute to the acquisition of geophysical well logging data as well as accurate and reliable cores.

Development of a Pressure Core Sampler with Built-in Data Logging System (데이터 기록 장치가 내장된 PCS (Pressure Core Sampler)의 개발)

  • Kim, Sang Il;Cho, Young Hee;Ki, Jung Seck;Kim, Dong Wook;Lee, Kye Kwang;Kim, Hae Jin;Choi, Kook Jin
    • The Journal of Engineering Geology
    • /
    • v.24 no.3
    • /
    • pp.423-429
    • /
    • 2014
  • Development of a reservoir pressure core sampler (PCS) with a built-in data logging system (DLS) for recording real-time temperature and pressure observations is critical in domestic hydrocarbon production to accurately measure and monitor reserves of shale gas, coalbed methane, and gas-hydrate. Another purpose of this new technology is to minimize the loss of gas from the core as the drill core is collected. This is accomplished by maintaining the pressure of the sample from the moment the drill core is obtained at depth, thus allowing an accurate analysis of shale gas, coalbed methane gas, and gashydrate within the core. Currently, the United States and European countries have monopolized the development and marketability of PCS technologies. We are thus developing a reservoir PCS by analyzing the operating principle and mechanisms of the existing PCS, and by conducting tests on the existing PCS. We further aim to develop a PCS with a maximum operating pressure of 100 bar, a maximum operating temperature of $-20^{\circ}C$ to $40^{\circ}C$, and a pressure loss rate of 10%.