• Title/Summary/Keyword: Reservoir Dams

Search Result 201, Processing Time 0.02 seconds

A study on the feasibility analysis of the current flood season: a case study of the Yongdam Dam (현행 법정홍수기 타당성 검토 및 개선에 관한 연구: 용담댐 사례)

  • Lee, Jae Hwang;Kim, Gi Joo;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.5
    • /
    • pp.359-369
    • /
    • 2024
  • Korea prepares for potential floods by designating June 21st to September 20th as the flood season. However, many dams in Korea have suffered from extreme floods caused by different climate patterns, as in the case of the longest consecutive rain of 54 days in the 2020's flood season. In this context, various studies have tried to develop novel methodologies to reduce flood damage, but no study has ever dealt with the validity of the current statutory flood season thus far. This study first checked the validity of the current flood season through the observation data in the 21st century and proved that the current flood season does not consider the effects of increasing precipitation trends and the changing regional rainfall characteristics. In order to deal with these limitations, this study suggested seven new alternative flood seasons in the research area. The rigid reservoir operation method (ROM) was used for reservoir simulation, and the long short-term memory (LSTM) model was used to derive predicted inflow. Finally, all alternatives were evaluated based on whether if they exceeded the design discharge of the dam and the design flood of the river. As a result, the floods in the shifted period were reduced by 0.068% and 0.33% in terms of frequency and duration, and the magnitude also decreased by 24.6%, respectively. During this period, the second evaluation method also demonstrated that flood decreased from four to two occurrences. As the result of this study, the authors expect a formal reassessment of the flood season to take place, which will ultimately lead to the preemptive flood response to changing precipitation patterns.

Study on Characteristics of Community and Ecology of Fishes in the Newly Constructed Gunwi Dam Reservoir (신규로 건설된 군위댐 호내 어류 군집 및 생태적 특성에 관한 연구)

  • Lee, Jin-Woong;Yoon, Ju-Duk;Kim, Jeong-Hui;Park, Sang-Hyeon;Baek, Seung-Ho;Chang, Kwang-Hyeon;Jang, Min-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.4
    • /
    • pp.219-228
    • /
    • 2015
  • To secure water resources, dams are normally constructed on the upper - middle part of streams, and it generates physical disturbances such as habitat alteration and stream fragmentation. Such construction can restrict movement of aquatic organisms, especially for freshwater fish which is one of top predator in aquatic ecosystem, and cause genetic fragmentation and community change. In this study, to investigate impact of habitat alteration after dam construction on freshwater fish, we monitored fish community changes, and compared fish fauna between dam reservoir and inflows. Additionally, movement characteristics and habitat boundaries of four species were identified by radio telemetry method. The study was conducted in the Gunwi Dam which was constructed in December 2010. Radio telemetry was applied to Pungtungia herzi, Zacco platypus (living lotic and lentic), Silurus asotus (lentic preferred species) and Zacco koreanus (lotic preferred species). The number of species was remarkably decreased (4 family, 10 species) comparing with before the dam construction (7 family, 15 species). Specifically, Coreoleuciscus splendidus, Niwaella multifasciata, Liobagrus mediadiposalis, Coreoperca herzi and Odontobutis platycephala that inhabit in the lotic environment were not collected in the study area. A total of 8 species were caught in both the dam reservoir and tributaries except 2 species (C. auratus and S. asotus). Sorenson's similarity between the reservoir and its tributaries was high (0.842). All of the radio tagged species stayed in the reservoir except S. asotus which moved to the tributary. These species mainly utilized the shallow littoral zone as a habitat. These results could be useful as a baseline data for efficient management of fishes in lakes.

Rainfall and Hydrological Comparative Analysis of Water Quality Variability in Euiam Reservoir, the North-Han River, Korea (북한강 의암호의 수질 변동성에 대한 강우·수문학적 비교분석)

  • Hwang, Soon-Jin;Sim, Yeon Bo;Choi, Bong-Geun;Kim, Keonhee;Park, Chaehong;Seo, Wanbum;Park, Myung-Hwan;Lee, Su-Woong;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.1
    • /
    • pp.29-45
    • /
    • 2017
  • This study explored spatiotemporal variability of water quality in correspondence with hydro-meteorological factors in the four stations of Euiam Reservoir located in the upstream region of the North-Han River from May 2012 to December 2015. Seasonal effect was apparent in the variation of water temperature, DO, electric conductivity and TSS during the study period. Stratification in the water column was observed in the near dam site every year and vanished between August and October. Increase of nitrogen nutrients was observed when inflowing discharge was low, while phosphorus increase was distinct both during the early season with increase of inflowing discharge and the period of severe draught persistent. Duration persisting high concentration of Chl-a (>$25mg\;m^{-3}$: the eutrophic status criterion, OECD, 1982) was 1~2 months of the whole year in 2014~2015, while it was almost 4 months in 2013. Water quality of Euiam Reservoir appeared to be affected basically by geomorphology and source of pollutants, such as longitudinally linked instream islands and Aggregate Island, inflowing urban stream, and wastewater treatment plant discharge. While inflowing discharge from the dams upstream and outflow pattern causing water level change seem to largely govern the variability of water quality in this particular system. In the process of spatiotemporal water quality change, factors related to climate (e.g. flood, typhoon, abruptly high rainfall, scorching heat of summer), hydrology (amount of flow and water level) might be attributed to water pulse, dilution, backflow, uptake, and sedimentation. This study showed that change of water quality in Euiam Reservoir was very dynamic and suggested that its effect could be delivered to downstream (Cheongpyeong and Paldang Reservoirs) through year-round discharge for hydropower generation.

The Analysis of Potential Discharge to Supply the Stream Water Discharge in Paldang Dam by Dam Operation (댐 운용을 통한 팔당댐의 하천용수 공급가능량 분석)

  • Choi, Gye-Woon;Kim, Young-Kyu;Ham, Myeong-Soo;Hwang, Young-Man
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.121-128
    • /
    • 2008
  • Instream flows are defined as the stream flows needed to protect and preserve instream resources and values. They are supplied by the essential discharge for maintaining the channel. However, due to the lack of precipitation during the dry season, which is usually between the months of January and April, natural flows are not enough for the instream flows, thus leaving the dams at a shortage. In this paper, the method which will be discussed will show a physical way to improve water quality by the dilution of water that is supplied from a reservoir or dam, and how it is analyzed at the Han River basin. For the sake of this analysis, the basin has been divided into 33 catchments. Each catchment's natural flow has been simulated by SWAT-K, and the future water demand has been estimated using statistical data. It has also been assumed that the Han River basin has two large reservoirs(Chung-ju dam, and So-yang dam). The supply of potential discharge has been calculated using a case of water separately from each dam, as well as supply water from both dams.

Permeation Grouting Effect for Repair and Reinforcement of Old Dam (노후댐 보수보강을 위한 침투그라우팅 효과 분석)

  • LEE, Dong-Beom;Lim, Heui-Dae;Song, Young-Su
    • The Journal of Engineering Geology
    • /
    • v.28 no.2
    • /
    • pp.277-295
    • /
    • 2018
  • As it has become difficult to secure new water resources through dam construction due to the critical social public opinions on dam construction from 10 years ago, it is necessary to review the existing water resources through the review of existing dams. Accordingly, access methods, such as planning, construction and management, were carried out using technologies already accumulated in relation to the repair and reinforcement of the dam. As a result of the repair and reinforcement, permeation grouting has been performed in many dams, but the establishment of the technology is insufficient so far, and the published paper at home and abroad is extremely rare. In this thesis, low-pressure penetration and grouting reinforcement technologies for the YC dam are analyzed in detail. As a result, penetration grouting has shown that it can be effectively applied to the improvement in the constallability of the core fill-like a YC dam. In addition, the technical details of the experience-proven penetration grouting are given in relation to the injection criteria. It is deemed that the specific analysis data of the Fill Dam penetration grouting technology through this study can be used as useful data for strengthening the repair of Fill Dam and reservoir.

A Study on Travelling Characteristics and Choice of Proper Location of Dam Discharge Alarm Broadcasting (댐 방류 경보방송의 전달 특성 및 적정 위치 선정에 관한 연구)

  • Kim, Dae-Goon;Kim, Jae-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.8
    • /
    • pp.635-640
    • /
    • 2009
  • After 1960s, in accordance with getting bigger in changing range of annual rain precipitation, those dams were built in order to prevent any drought and flood through the regulation of flux. In case of such dam, when it reaches to some definite pondage, for its regulation of water volume, numerous volume of water in the reservoir should be discharged by opening the floodgate, at this time a severe damage can be occurred to those lives and properties of the residents and tourists at the river or riverside. Accordingly, despite the sounding alarm broadcasting for prevention and notice such damage could be clearly travelled to those people without influence by the discharging noise or other neighboring environmental factor, since it was only empirically installed without any peculiar research until now, the alarm broadcasting could not effectively travel, and the travelling distance also could not known correctly. On such point of view, this Study has ever grasped the characteristics by frequencies and its sound pressure level about the discharge noise and the alarm broadcasting of Daechung Dam, one of multipurpose dams through the measurement and analysis by distances, and based on this, also has ever presupposed the proper location of additional alarm broadcasting spot using a simulation program named Cadna-A.

Distortion of Resistivity Data Due to the 3D Geometry of Embankment Dams (저수지 3차원 구조에 의한 전기비저항 탐사자료의 왜곡)

  • Cho, In-Ky;Kang, Hyung-Jae;Kim, Ki-Ju
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.4
    • /
    • pp.291-298
    • /
    • 2006
  • Resistivity method is a practical and effective geophysical technique to detect leakage zones in embankment dams. Generally, resistivity survey conducted along the crest assumes that the embankment dam has a 2D structure. However, the 3D topography of embankments distorts significantly resistivity data measured on anywhere of the dam. In this study, we analyse the influence from 3D effects created by specific dam geometry through the 3D finite element modeling technique. We compared 3D effects when resistivity surveys are carried out on the upstream slope, left edge of the crest, center of the crest, right edge of the crest and downstream slope. We ensure that 3D effect is greatly different according to the location of the survey line and data obtained on the downstream slope are most greatly influenced by 3D dam geometry. Also, resistivity data are more influenced by the electrical resistivity of materials constituting reservoir than 3D effects due to specific dam geometry. Furthermore, using resistivity data synthesized with 3D modeling program for an embankment dam model with leakage zone, we analyse the possibility of leakages detection from 2D resistivity surveys performed along the embankment dam.

A Study on Selection of Optimal Shelters according to Dam Break Scenario Based on Continuous Rainfall Event (연속호우사상기반의 댐 붕괴 시나리오에 따른 최적대피소 선정에 관한 연구)

  • Kim, Kyunghun;Lim, Jonghun;Kim, Hung Soo;Shin, Soeng Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.433-447
    • /
    • 2023
  • There is a growing demand for the stability of existing dams due to abnormal climate and the aging of dams. Emergency Action Plans (EAPs) for reservoir or dam failure only consider a single rainfall event. Therefore, this study simulates dam failure caused by continuous rainfall events, and proposes the establishment of EAP by selecting the optimal shelters. We define a mega rainfall event scenario caused by continuous rainfall events with 500-year frequency in the Chungju Dam watershed and estimate the mega flood. The mega flood event scenario is divided into two cases: scenario A represents the flooding case caused by discharge release from a dam, while scenario B is the case of a dam break. As a result of flood inundation analysis, the flooded damage area by the scenario A is 50.06 km2 and the area by the scenario B is 6.1 times of scenario A (307.45 km2). We select optimal shelters for each administrative region in the city of Chungju, which has the highest inundation rate in the urban area. Seven shelter evaluation indicators from domestic and foreign shelter selection criteria are chosen, and Analytical Hierarchy Process (AHP) method is used to evaluate the alternatives. As a result of the optimal shelter selection, the six shelters are selected and five are schools. This study considers continuous rainfall events for inundation analysis and selection of optimal shelters. Also, the results of this study could be used as a reference for establishment of the EAP.

A Research on Applicability of Drone Photogrammetry for Dam Safety Inspection (드론 Photogrammetry 기반 댐 시설물 안전점검 적용성 연구)

  • DongSoon Park;Jin-Il Yu;Hojun You
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.30-39
    • /
    • 2023
  • Large dams, which are critical infrastructures for disaster prevention, are exposed to various risks such as aging, floods, and earthquakes. Better dam safety inspection and diagnosis using digital transformation technologies are needed. Traditional visual inspection methods by human inspectors have several limitations, including many inaccessible areas, danger of working at heights, and know-how based subjective inspections. In this study, drone photogrammetry was performed on two large dams to evaluate the applicability of digital data-based dam safety inspection and propose a data management methodology for continuous use. High-quality 3D digital models with GSD (ground sampling distance) within 2.5 cm/pixel were generated by flat double grid missions and manual photography methods, despite reservoir water surface and electromagnetic interferences, and severe altitude differences ranging from 42 m to 99.9 m of dam heights. Geometry profiles of the as-built conditions were easily extracted from the generated 3D mesh models, orthomosaic images, and digital surface models. The effectiveness of monitoring dam deformation by photogrammetry was confirmed. Cracks and deterioration of dam concrete structures, such as spillways and intake towers, were detected and visualized efficiently using the digital 3D models. This can be used for safe inspection of inaccessible areas and avoiding risky tasks at heights. Furthermore, a methodology for mapping the inspection result onto the 3D digital model and structuring a relational database for managing deterioration information history was proposed. As a result of measuring the labor and time required for safety inspection at the SYG Dam spillway, the drone photogrammetry method was found to have a 48% productivity improvement effect compared to the conventional manpower visual inspection method. The drone photogrammetry-based dam safety inspection is considered very effective in improving work productivity and data reliability.

Comparative analysis of ONE parameter hydrological model on domestic watershed (ONE 모형의 국내유역 적용 및 비교 분석)

  • Ko, Heemin;An, Hyunuk;Noh, Jaekyung;Lee, Seungjun
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.1
    • /
    • pp.59-72
    • /
    • 2024
  • Agricultural reservoirs supply water for various purposes such as irrigation, maintenance, and living. Since agricultural reservoirs respond sensitively to seasonal and climate changes, it is essential to estimate supply and inflow for efficient operation, and water management should be done based on these data. However, in the case of agricultural reservoirs, the measurement of supply and inflow is relatively insufficient compared to multi-purpose dams, and inflow-supply analysis in agricultural reservoirs through water balance analysis is necessary for efficient water management. Therefore, rainfall-runoff analysis models such as ONE model and Tank model have been developed and used for reservoir water balance analysis, but the applicability analysis for ungauged watersheds is insufficient. The ONE model is designed for daily runoff calculation, and the model has one parameter, which is advantageous for calibration and ungauged watershed analysis. In this study, the water balance was analyzed through the ONE model and the Tank model for 15 watersheds upstream of dams, and R2 and NSE were used to quantitatively compare the performance of the two models. The simulation results show that the ONE model is suitable for predicting the inflow of agricultural reservoirs with the ungauged watershed