• Title/Summary/Keyword: Research variable

Search Result 6,558, Processing Time 0.036 seconds

The Effects of Microcomputer Networking on the Perception of Threats to Security : the Military User크s Case (마이크로컴퓨터의 네트워크화 여부가 보안 위협 인식에 미치는 영향 : 군조직을 대상으로)

  • 이찬희;김준석;서길수
    • The Journal of Information Technology and Database
    • /
    • v.6 no.2
    • /
    • pp.1-18
    • /
    • 1999
  • The purpose of this study was to identify the effect of microcomputer networking on user perception of potential threats to security employing user attitudes as a moderating variable. A research model consisting of microcomputer networking as the independent variable, user perception of potential threats to security as the dependent variable, and user attitude toward security control as the moderating variable was developed through literature review. The results of this study provide an empirical evidence of the importance of environmental change(information systems networking) on user perception of potential threats to security. Further-more the result imply that in order to improve security performance through the reinforcement of user perception of threats to security in the organization, user attitudes should be made favorable.

  • PDF

Validation Comparison of Credit Rating Models Using Box-Cox Transformation

  • Hong, Chong-Sun;Choi, Jeong-Min
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.3
    • /
    • pp.789-800
    • /
    • 2008
  • Current credit evaluation models based on financial data make use of smoothing estimated default ratios which are transformed from each financial variable. In this work, some problems of the credit evaluation models developed by financial experts are discussed and we propose improved credit evaluation models based on the stepwise variable selection method and Box-Cox transformed data whose distribution is much skewed to the right. After comparing goodness-of-fit tests of these models, the validation of the credit evaluation models using statistical methods such as the stepwise variable selection method and Box-Cox transformation function is explained.

  • PDF

The Arc Brazing by Variable Polarity AC Pulse MIG Welding Machine (극성가변 AC 펄스 MIG용접기를 이용한 아크 브레이징)

  • 조상명;공현상
    • Journal of Welding and Joining
    • /
    • v.21 no.4
    • /
    • pp.56-62
    • /
    • 2003
  • MIG brazing is used for many parts without melting base metal because of high productivity. Pulsed MIG brazing can be used to further reduce heat input and to improve the process stability. However, a significant amount of zinc in galvanized sheet steel is burned off in the area of brazes. Therefore, the brazing method to reduce the heat input is needed. In the brazing for galvanized sheet steel, variable polarity AC pulse MIG arc brazing can be applied to more decrease the heat input by setting EN-ratio adequately. In this research, we studied for the variable polarity AC pulse MIG arc brazing to decrease the heat input by using ERCuSi-A wire. As the result of increasing EN-ratio, melting ratio of base metal and burning off of zinc were reduced in galvanized sheet steel.

단체법에서의 효율적인 단일인공변수법의 구현

  • 임성묵;박찬규;김우제;박순달
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1997.10a
    • /
    • pp.52-55
    • /
    • 1997
  • In this paper, both the generalization of one artificial variable technique to the general bound problem and the efficient implementation of the technique are suggested. When the steepest-edge method is used as a pricing rule in the simplex method, it is easy to update the reduced cost and the simplex multiplier every iteration. Therefore, one artificial variable technique is more efficient than Wolfe's method in which the reduced cost and simplex multiplier must be recalculated in every iteration. When implementing the one artificial variable technique on the LP problems with the general bound restraints on the variables, an arbitrary basic solution which satisfies the bound restraints is sought first, and the artificial column which adjusts the infeasibility is introduced. The phase one of the simplex method minimizes the one artificial variable. The efficient implementation technique includes the splitting, scaling, storage of the artificial column, and the cure of infeasibility problem.

  • PDF

Induction Motor Position Controller Based on Rotational Motion Equations

  • Salem, Mahmoud M.
    • Journal of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.268-274
    • /
    • 2008
  • This paper presents a proposed position controller for a vector controlled induction motor. The position controller design depends on the rotational motion equations and a classical speed controller (CSC) performance. The CSC is designed to have the ability to track variable reference inputs and to provide a predefined system performance. Standard position controller in industry is presented to analyze its performance and its drawbacks. Then the proposed position controller is designed, based on the well defined rotational motion equations. The proposed position controller and the CSC are applied to control the position and speed of the vector controlled induction motor with different ratings. Simulation results at different operating conditions are presented to evaluate the proposed controllers' performance. The results show that the CSC can drive the motor with a predefined speed performance and can track a variable reference speed with an approximately zero steady state error. The results also show that the proposed position controller has the ability to effect high-precision positioning in a limited time and to track a variable reference position with a zero steady state error.

EXACT SOLUTIONS OF THE MDI AND SAWADA-KOTERA EQUATIONS WITH VARIABLE COEFFICIENTS VIA EXP-FUNCTION METHOD

  • Zhang, Sheng;Abdou, M.A.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.143-152
    • /
    • 2010
  • Based on the Exp-function method and a suitable transformation, new generalized solitonary solutions including free parameters of the MDI and Sawada-Kotera equations with variable coefficients are obtained, form which solitary wave solutions and periodic solutions including some known solutions reported in open literature are derived as special cases. The free parameters in the obtained generalized solitonary solutions might imply some meaningful results in the physical models. It is shown that the Exp-function method provides a very effective and important new method for nonlinear evolution equations with variable coefficients.

Contact Mechanics of Variable-Gauge Wheeles With Flexible Body (탄성체를 이용한 궤간가변 대차용 윤축시스템의 접촉력 해석)

  • Lee Young-Joo;Bae Dae-Sung;Kim Wan-Goo;Jang Seung-Ho;Han Jun-Suk
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.379-384
    • /
    • 2005
  • Research interest on flexible body dynamics, has been increased recently. The major application areas are the auto-mobile, train, and heavy machinery. This paper attempted the dynamic analysis for the variable-gauge wheelset with a flexible body, to better understand the dynamic characteristics of the variable-gauge wheelset. In order to achieve this goal, a 3D-Virtual Mock-up model was built. The tendency of the stress and deformation for the flexible lever was investigated through component mode synthesis, contact mechanics and flexible body dynamics. This study is a pioneering work for the development of Korean type variable-gauge wheelset.

  • PDF

Variable Selection with Regression Trees

  • Chang, Young-Jae
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.2
    • /
    • pp.357-366
    • /
    • 2010
  • Many tree algorithms have been developed for regression problems. Although they are regarded as good algorithms, most of them suffer from loss of prediction accuracy when there are many noise variables. To handle this problem, we propose the multi-step GUIDE, which is a regression tree algorithm with a variable selection process. The multi-step GUIDE performs better than some of the well-known algorithms such as Random Forest and MARS. The results based on simulation study shows that the multi-step GUIDE outperforms other algorithms in terms of variable selection and prediction accuracy. It generally selects the important variables correctly with relatively few noise variables and eventually gives good prediction accuracy.

Numerical analysis of FGM plates with variable thickness subjected to thermal buckling

  • Bouguenina, Otbi;Belakhdar, Khalil;Tounsi, Abdelouahed;Adda Bedia, El Abbes
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.679-695
    • /
    • 2015
  • A numerical solution using finite difference method to evaluate the thermal buckling of simply supported FGM plate with variable thickness is presented in this research. First, the governing differential equation of thermal stability under uniform temperature through the plate thickness is derived. Then, the governing equation has been solved using finite difference method. After validating the presented numerical method with the analytical solution, the finite difference formulation has been extended in order to include variable thickness. The accuracy of the finite difference method for variable thickness plate has been also compared with the literature where a good agreement has been found. Furthermore, a parametric study has been conducted to analyze the effect of material and geometric parameters on the thermal buckling resistance of the FGM plates. It was found that the thickness variation affects isotropic plates a bit more than FGM plates.