• Title/Summary/Keyword: Research problem

Search Result 15,792, Processing Time 0.05 seconds

Individual Strategies for Problem Solving

  • Revathy Parameswaran
    • Research in Mathematical Education
    • /
    • v.9 no.1 s.21
    • /
    • pp.11-24
    • /
    • 2005
  • Problem solving is an important aspect of learning mathematics and has been extensively researched into by mathematics educators. In this paper we analyze the difficulties students encounter in various steps involved in solving problems involving physical and geometrical applications of mathematical concepts. Our research shows that, generally students, in spite of possessing adequate theoretical knowledge, have difficulties in identifying the hidden data present in the problems which are crucial links to their successful resolutions. Our research also shows that students have difficulties in solving problems involving constructions and use of symmetry.

  • PDF

An Analysis on Teachers′ Role in Teaching Mathematical Problem Solving (수학적 문제해결 지도에서 교사의 역할에 대한 분석)

  • 전평국;정인수
    • Education of Primary School Mathematics
    • /
    • v.7 no.1
    • /
    • pp.1-14
    • /
    • 2003
  • The purpose of this research is to explore teachers' role actions in teaching mathematical problem solving and to analyze the influences of the teachers'role actions on their students' activities and beliefs about problem solving. The results obtained in this study suggested that the teachers' role actions brought qualitative differences to students' activities, and students' beliefs about mathematical problem solving were consistent with the perspective held by their teachers. Therefore, teachers should help students build up desirable beliefs about problem solving. They should understand teaching mathematical problem solving and play proper roles in various situations of teaching mathematical problem solving.

  • PDF

A Decomposition Method for the Multi-stage Dynamic Location Problem

  • Kahng, Hyun-Kon
    • Management Science and Financial Engineering
    • /
    • v.1 no.1
    • /
    • pp.21-37
    • /
    • 1995
  • This paper suggests a procedure of decomposing a multi-stage dynamic location problem into stages with respect stage. The problem can be formulated as a mixed integer programming problem, which is difficult to be solved directly. We perform a series of transformations in order to divide the problem into stages. In the process, the assumption of PSO (production-system-only) plays a critical role. The resulting subproblem becomes a typical single-stage dynamic location problem, whose efficient algorithms have been developed efficiently. An extension of this study is to find a method to integrate the solutions of subproblems for a final solution of the problem.

  • PDF

A Face Optimization Algorithm for Optimizing over the Efficient Set

  • Kim, Dong-Yeop;Taeho Ahn
    • Korean Management Science Review
    • /
    • v.15 no.1
    • /
    • pp.77-85
    • /
    • 1998
  • In this paper a face optimization algorithm is developed for solving the problem (P) of optimizing a linear function over the set of efficient solutions of a multiple objective linear program. Since the efficient set is in general a nonconvex set, problem (P) can be classified as a global optimization problem. Perhaps due to its inherent difficulty, relatively few attempts have been made to solve problem (P) in spite of the potential benefits which can be obtained by solving problem (P). The algorithm for solving problem (P) is guaranteed to find an exact optimal or almost exact optimal solution for the problem in a finite number of iterations.

  • PDF

Development of Instructional Models for Problem Solving in Quadratic Functions and Ellipses (이차함수와 타원의 문제해결 지도를 위한 멀티미디어 학습자료 개발)

  • 김인수;고상숙;박승재;김영진
    • Journal of Educational Research in Mathematics
    • /
    • v.8 no.1
    • /
    • pp.59-71
    • /
    • 1998
  • Recently, most classrooms in Korea are fully equipped with multimedia environments such as a powerful pentium pc, a 43″large sized TV, and so on through the third renovation of classroom environments. However, there is not much software teachers can use directly in their teaching. Even with existing software such as GSP, and Mathematica, it turns out that it doesn####t fit well in a large number of students in classrooms and with all written in English. The study is to analyze the characteristics of problem-solving process and to develop a computer program which integrates the instruction of problem solving into a regular math program in areas of quadratic functions and ellipses. Problem Solving in this study included two sessions: 1) Learning of basic facts, concepts, and principles; 2) problem solving with problem contexts. In the former, the program was constructed based on the definitions of concepts so that students can explore, conjecture, and discover such mathematical ideas as basic facts, concepts, and principles. In the latter, the Polya#s 4 phases of problem-solving process contributed to designing of the program. In understanding of a problem, the program enhanced students#### understanding with multiple, dynamic representations of the problem using visualization. The strategies used in making a plan were collecting data, using pictures, inductive, and deductive reasoning, and creative reasoning to develop abstract thinking. In carrying out the plan, students can solve the problem according to their strategies they planned in the previous phase. In looking back, the program is very useful to provide students an opportunity to reflect problem-solving process, generalize their solution and create a new in-depth problem. This program was well matched with the dynamic and oscillation Polya#s problem-solving process. Moreover, students can facilitate their motivation to solve a problem with dynamic, multiple representations of the problem and become a powerful problem solve with confidence within an interactive computer environment. As a follow-up study, it is recommended to research the effect of the program in classrooms.

  • PDF

Let's Think about 'POVERTY' in the 21st Century : Using the Q methodology of Subjective Study (21세기, '빈곤'을 생각해보다: 주관성연구, Q방법론을 활용하여)

  • Lee, Doh-Hee;Kim, Gi-Woon
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.9
    • /
    • pp.265-272
    • /
    • 2019
  • In this study, 'poverty', which we think in our daily life, started from something. In particular, this study typified the perception of poverty by using the 'Q methodology', a subjective research method, to examine individual subjective opinions. The results of the analysis are as follows. is a "Retraction type", and poverty is a problem of 'Retention', 'Individual Effort Problem', 'Social Structure Problem', 'Low Status' and 'Laziness'. is a "Individual Problem type", and emphasizes 'Individual Effort Problem', 'Laziness', 'Incompetence', 'Starvation' and so on. is a "Basic Problem type", and emphasizes the basic element of life such as 'The Food and Shelter problem', 'Starvation', 'Laziness', and 'No Money'. is a "Resource Distribution Problem Type" that emphasizes the problem of resource allocation according to social structural problems. This study typifies the perception of poverty using subjectivity research method on 21st century and expects converging extension study to empirical studies for generalization.

Research on Cognitive Load Theory and Its Design Implications for Problem Solving Instruction

  • KWON, Sukjin
    • Educational Technology International
    • /
    • v.11 no.1
    • /
    • pp.93-117
    • /
    • 2010
  • The purpose of this study was to develop the problem solving instruction facilitating novice learner to represent the problem. For the purpose, we mainly focused on three aspects of problem solving. First, learner should represent the targeted problem and its solutions for problem solving. Second, from crucial notions of cognitive load theory, learner's mental load should be optimized for problem representation. Third, for optimizing students' mental load, experts may support making their thinking more visible and mapping from their intuition to expert practice. We drew the design principles as follows. First, since providing worked examples for the targeted problem has been considered to minimize analogical errors as well as reduce cognitive load in problem representation at line of problem solving and instructional research, it is needed to elaborate the way of designing. The worked example alternatively corresponds to expert schema that consists of domain knowledge as well as strategies for expert-like problem representation and solution. Thus, it may help learner to represent what the problem is and how to solve it in problem space. Second, principle can be that expert should scaffold learner's self-explanations. Because the students are unable to elicit the rationale from worked example, the expert's triggering scaffold may be critical in that process. The unexplained and incomplete parts of the example should be completed not by expert's scaffold but by themselves. Critical portion of the expert's scaffold is to explain about how to apply and represent the given problem, since students' initial representations may be reached at superficial or passive pattern of example elaboration. Finally, learner's mental model on the designated problem domain should be externalized or visualized for one's reflection as well as expert's scaffolding activities. The visualization helps learner to identify one's partial or incorrect model. The correct model of learner could be constructed by expert's help.

A Case Study of Teaching Method in Research Problem for Engineering Design (공학설계를 위한 전공연구 교수법 사례연구)

  • Lee, Dong-Myung
    • Journal of Engineering Education Research
    • /
    • v.15 no.3
    • /
    • pp.72-77
    • /
    • 2012
  • The engineering design is very important to make the building of engineering mind in many industry companies because most of companies require commonly the talents for engineering design in order to have originality, reliability and responsibility for university students. But, it can be thought that most of students studying engineering fields in Korea can not have their talents for engineering design in major fields of university sufficiently due to traditional engineering education method. In this paper, a case study of the teaching method for the 'esearch problem' that means capstone design in engineering education is suggested to improve the teaching skills for various engineering based fields. In this paper, a case study of teaching method in research problem for engineering design is shown in order to improve the teaching method for the design in engineering fields.

A Selection of Path Planning Algorithm to Maximize Survivability for Unmanned Aerial Vehicle (무인 항공기 생존성 극대화를 위한 이동 경로 계획 알고리즘 선정)

  • Kim, Ki-Tae;Jeon, Geon-Wook
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.2
    • /
    • pp.103-113
    • /
    • 2011
  • This research is to select a path planning algorithm to maximize survivability for Unmanned Aerial Vehicle(UAV). An UAV is a powered pilotless aircraft, which is controlled remotely or autonomously. UAVs are currently employed in many military missions(surveillance, reconnaissance, communication relay, targeting, strike etc.) and a number of civilian applications(communication service, broadcast service, traffic control support, monitoring, measurement etc.). In this research, a mathematical programming model is suggested by using MRPP(Most Reliable Path Problem) and verified by using ILOG CPLEX. A path planning algorithm for UAV is selected by comparing of SPP(Shortest Path Problem) algorithms which transfer MRPP into SPP.

Cell Based CMFD Formulation for Acceleration of Whole-core Method of Characteristics Calculations

  • Cho, Jin-Young;Joo, Han-Gyu;Kim, Kang-Seog;Zee, Sung-Quun
    • Nuclear Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.250-258
    • /
    • 2002
  • This Paper is to apply the well-established coarse mesh finite difference(CMFD) method to the method of characteristics(MOC) transport calculation as an acceleration scheme. The CMFD problem is first formulated at the pin-cell level with the multi-group structure To solve the cell- based multi-group CMFD problem efficiently, a two-group CMFD formulation is also derived from the multi-group CMFD formulation. The performance of the CMFD acceleration is examined for three test problems with different sizes including a realistic quarter core PWR problem. The CMFD formulation provides a significant reduction in the number of ray tracings and thus only about 9 ray tracing iterations are enough for the realistic problem. In computing time, the CMFD accelerated case is about two or three times faster than the coarse-mesh rebalancing(CMR) accelerated case.