• Title/Summary/Keyword: Research Information Systems

Search Result 12,210, Processing Time 0.042 seconds

An Empirical Study on the Cryptocurrency Investment Methodology Combining Deep Learning and Short-term Trading Strategies (딥러닝과 단기매매전략을 결합한 암호화폐 투자 방법론 실증 연구)

  • Yumin Lee;Minhyuk Lee
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.377-396
    • /
    • 2023
  • As the cryptocurrency market continues to grow, it has developed into a new financial market. The need for investment strategy research on the cryptocurrency market is also emerging. This study aims to conduct an empirical analysis on an investment methodology of cryptocurrency that combines short-term trading strategy and deep learning. Daily price data of the Ethereum was collected through the API of Upbit, the Korean cryptocurrency exchange. The investment performance of the experimental model was analyzed by finding the optimal parameters based on past data. The experimental model is a volatility breakout strategy(VBS), a Long Short Term Memory(LSTM) model, moving average cross strategy and a combined model. VBS is a short-term trading strategy that buys when volatility rises significantly on a daily basis and sells at the closing price of the day. LSTM is suitable for time series data among deep learning models, and the predicted closing price obtained through the prediction model was applied to the simple trading rule. The moving average cross strategy determines whether to buy or sell when the moving average crosses. The combined model is a trading rule made by using derived variables of the VBS and LSTM model using AND/OR for the buy conditions. The result shows that combined model is better investment performance than the single model. This study has academic significance in that it goes beyond simple deep learning-based cryptocurrency price prediction and improves investment performance by combining deep learning and short-term trading strategies, and has practical significance in that it shows the applicability in actual investment.

Development of an Ensemble-Based Multi-Region Integrated Odor Concentration Prediction Model (앙상블 기반의 악취 농도 다지역 통합 예측 모델 개발)

  • Seong-Ju Cho;Woo-seok Choi;Sang-hyun Choi
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.383-400
    • /
    • 2023
  • Air pollution-related diseases are escalating worldwide, with the World Health Organization (WHO) estimating approximately 7 million annual deaths in 2022. The rapid expansion of industrial facilities, increased emissions from various sources, and uncontrolled release of odorous substances have brought air pollution to the forefront of societal concerns. In South Korea, odor is categorized as an independent environmental pollutant, alongside air and water pollution, directly impacting the health of local residents by causing discomfort and aversion. However, the current odor management system in Korea remains inadequate, necessitating improvements. This study aims to enhance the odor management system by analyzing 1,010,749 data points collected from odor sensors located in Osong, Chungcheongbuk-do, using an Ensemble-Based Multi-Region Integrated Odor Concentration Prediction Model. The research results demonstrate that the model based on the XGBoost algorithm exhibited superior performance, with an RMSE of 0.0096, significantly outperforming the single-region model (0.0146) with a 51.9% reduction in mean error size. This underscores the potential for increasing data volume, improving accuracy, and enabling odor prediction in diverse regions using a unified model through the standardization of odor concentration data collected from various regions.

Developing a New Algorithm for Conversational Agent to Detect Recognition Error and Neologism Meaning: Utilizing Korean Syllable-based Word Similarity (대화형 에이전트 인식오류 및 신조어 탐지를 위한 알고리즘 개발: 한글 음절 분리 기반의 단어 유사도 활용)

  • Jung-Won Lee;Il Im
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.267-286
    • /
    • 2023
  • The conversational agents such as AI speakers utilize voice conversation for human-computer interaction. Voice recognition errors often occur in conversational situations. Recognition errors in user utterance records can be categorized into two types. The first type is misrecognition errors, where the agent fails to recognize the user's speech entirely. The second type is misinterpretation errors, where the user's speech is recognized and services are provided, but the interpretation differs from the user's intention. Among these, misinterpretation errors require separate error detection as they are recorded as successful service interactions. In this study, various text separation methods were applied to detect misinterpretation. For each of these text separation methods, the similarity of consecutive speech pairs using word embedding and document embedding techniques, which convert words and documents into vectors. This approach goes beyond simple word-based similarity calculation to explore a new method for detecting misinterpretation errors. The research method involved utilizing real user utterance records to train and develop a detection model by applying patterns of misinterpretation error causes. The results revealed that the most significant analysis result was obtained through initial consonant extraction for detecting misinterpretation errors caused by the use of unregistered neologisms. Through comparison with other separation methods, different error types could be observed. This study has two main implications. First, for misinterpretation errors that are difficult to detect due to lack of recognition, the study proposed diverse text separation methods and found a novel method that improved performance remarkably. Second, if this is applied to conversational agents or voice recognition services requiring neologism detection, patterns of errors occurring from the voice recognition stage can be specified. The study proposed and verified that even if not categorized as errors, services can be provided according to user-desired results.

How do people verify identity in the Metaverse: Through exploring the user's avatar (메타버스 내 아바타 정체성 확인에 영향을 미치는 요인에 관한 연구)

  • Kihyun Kim;Seongwon Lee;Kil-Soo Suh
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.189-217
    • /
    • 2023
  • The metaverse is a virtual world where individuals engage in social, economic, and cultural activities using avatars, which represent an alternate version of oneself within the virtual realm. While the metaverse has garnered global attention recently, research exploring the identity manifested through avatars within the metaverse remains limited. This study investigates the influence of four IT artifact characteristics related to avatar usage in the metaverse-avatar representation, avatar copresence, avatar profiling, and avatar-space interaction-on perceived avatar identity verification. A survey was conducted with 196 experienced users of the Zepeto platform, and hypotheses were tested using structural equation modeling. The analysis results indicate that the use of IT artifacts enabling avatar representation, avatar copresence, and avatar-space interaction has a positive impact on perceived avatar identity verification. This achieved self-verification indirectly influences the satisfaction and subsequent intention to continue using the metaverse. This study contributes to the academic field by empirically verifying the metaverse technological factors that influence the projected identity onto avatars within the metaverse. Furthermore, it is expected to provide effective guidelines for metaverse platform companies in designing and implementing the metaverse.

Corporate Bankruptcy Prediction Model using Explainable AI-based Feature Selection (설명가능 AI 기반의 변수선정을 이용한 기업부실예측모형)

  • Gundoo Moon;Kyoung-jae Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.241-265
    • /
    • 2023
  • A corporate insolvency prediction model serves as a vital tool for objectively monitoring the financial condition of companies. It enables timely warnings, facilitates responsive actions, and supports the formulation of effective management strategies to mitigate bankruptcy risks and enhance performance. Investors and financial institutions utilize default prediction models to minimize financial losses. As the interest in utilizing artificial intelligence (AI) technology for corporate insolvency prediction grows, extensive research has been conducted in this domain. However, there is an increasing demand for explainable AI models in corporate insolvency prediction, emphasizing interpretability and reliability. The SHAP (SHapley Additive exPlanations) technique has gained significant popularity and has demonstrated strong performance in various applications. Nonetheless, it has limitations such as computational cost, processing time, and scalability concerns based on the number of variables. This study introduces a novel approach to variable selection that reduces the number of variables by averaging SHAP values from bootstrapped data subsets instead of using the entire dataset. This technique aims to improve computational efficiency while maintaining excellent predictive performance. To obtain classification results, we aim to train random forest, XGBoost, and C5.0 models using carefully selected variables with high interpretability. The classification accuracy of the ensemble model, generated through soft voting as the goal of high-performance model design, is compared with the individual models. The study leverages data from 1,698 Korean light industrial companies and employs bootstrapping to create distinct data groups. Logistic Regression is employed to calculate SHAP values for each data group, and their averages are computed to derive the final SHAP values. The proposed model enhances interpretability and aims to achieve superior predictive performance.

Improving the Classification of Population and Housing Census with AI: An Industry and Job Code Study

  • Byung-Il Yun;Dahye Kim;Young-Jin Kim;Medard Edmund Mswahili;Young-Seob Jeong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.4
    • /
    • pp.21-29
    • /
    • 2023
  • In this paper, we propose an AI-based system for automatically classifying industry and occupation codes in the population census. The accurate classification of industry and occupation codes is crucial for informing policy decisions, allocating resources, and conducting research. However, this task has traditionally been performed by human coders, which is time-consuming, resource-intensive, and prone to errors. Our system represents a significant improvement over the existing rule-based system used by the statistics agency, which relies on user-entered data for code classification. In this paper, we trained and evaluated several models, and developed an ensemble model that achieved an 86.76% match accuracy in industry and 81.84% in occupation, outperforming the best individual model. Additionally, we propose process improvement work based on the classification probability results of the model. Our proposed method utilizes an ensemble model that combines transfer learning techniques with pre-trained models. In this paper, we demonstrate the potential for AI-based systems to improve the accuracy and efficiency of population census data classification. By automating this process with AI, we can achieve more accurate and consistent results while reducing the workload on agency staff.

Liaohe National Park based on big data visualization Visitor Perception Study

  • Qi-Wei Jing;Zi-Yang Liu;Cheng-Kang Zheng
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.4
    • /
    • pp.133-142
    • /
    • 2023
  • National parks are one of the important types of protected area management systems established by IUCN and a management model for implementing effective conservation and sustainable use of natural and cultural heritage in countries around the world, and they assume important roles in conservation, scientific research, education, recreation and driving community development. In the context of big data, this study takes China's Liaohe National Park, a typical representative of global coastal wetlands, as a case study, and using Python technology to collect tourists' travelogues and reviews from major OTA websites in China as a source. The text spans from 2015 to 2022 and contains 2998 reviews with 166,588 words in total. The results show that wildlife resources, natural landscape, wetland ecology and the fishing and hunting culture of northern China are fully reflected in the perceptions of visitors to Liaohe National Park; visitors have strong positive feelings toward Liaohe National Park, but there is still much room for improvement in supporting services and facilities, public education and visitor experience and participation.

The Development of a Web-based Decision Support System for Construction Claim Management (건설 클레임 관리를 위한 웹기반의 의사결정 지원 시스템 개발)

  • Sung, Nak Won;Kim, Young Suk;Lee, Mi Young;Lee, Jung Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1D
    • /
    • pp.115-123
    • /
    • 2006
  • Recently, construction claims have been increased for protecting the rights of construction participants and effectively adjusting the changes under the contract. Thus, the importance of claim management has been emphasized in the construction industry. In domestic construction industry, some claim issues involved in construction activities are often being developed into disputes and even litigations because of the absence of methods or systems for the dispute resolution, and the lack of judicial precedents which can be provided as the references for resolving a particular dispute. In general, the judicial precedents related to the disputes and litigations occurred among construction participants would be extremely valuable in evaluating and analyzing current claims issues. However, such useful information has not been effectively accumulated and utilized in resolving the similar or sometimes identical types of disputes, thus requiring a large amount of additional costs, time and efforts. The primary objective of this study is to propose a web-based decision support system for construction claim management, which enables contractual participants to easily access and use the information of the judicial precedents related to the current construction claims. The decision support system is composed of 'prevention' and 'settlement' modules for avoiding and systematically resolving the construction claims.

YouTube Video Content Analysis: Focusing on Korean Dance Videos (유튜브(YouTube) 영상 콘텐츠 분석: 국내 무용 영상을 중심으로)

  • Suejung Chae;Jihae Suh
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.1-13
    • /
    • 2023
  • The widespread adoption of smartphones and advancements in internet technology have notably shifted content consumption habits toward video. This research aims to dissect the nature of videos posted on YouTube, the global video-sharing platform, to understand the characteristics of both produced and preferred content. For this study, dance was chosen as a specific subject from a variety of video categories. Data on YouTube videos associated with the term "dance" was compiled over three years, from 2019 to 2021. The investigation revealed a clear distinction between the types of dance videos frequently uploaded to YouTube and those that receive a high number of views. The empirical analysis of this study indicates a viewer preference for vlogs that provide insights into the daily lives of dance students, as well as for purpose-driven videos, such as those highlighting dance exam preparations or school dance events. Notably, the vlogs that attract the most attention are typically created by dance students at the college or secondary school level, rather than by professionals. Although the study was focused on dance, its methodologies can be applied to different subjects. These insights are expected to contribute to the development of a recommendation system that aids content creators in effectively targeting their productions.

A Reflection of Aging Society in Online Communities: An Exploratory Study on Changes in Conversation Style and Language Usage (온라인 커뮤니티에서 보여지는 노령화 사회의 단면: 대화 방식과 사용 언어의 변화에 대한 탐색적 연구)

  • Jung Lee;Jinyoung Han;Juyeon Ham
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.51-68
    • /
    • 2023
  • With the emergence of the internet and the increasing use of online communities for over 20 years, the age range of users has also been rising. This study explores the linguistic changes that have occurred as the user age in online communities has increased. To do this, data was collected and analyzed from an online community that has been actively operating, despite new member registrations being closed nine years ago. By comparing the posts over an 11-year period from 2012 to 2022, changes such as an increase in average comments, a decrease in interrogative sentences, and a decrease in imperative statements were observed. The study also proposed loneliness due to aging and a decline in curiosity and confidence as potential causes of these changes. In South Korea, which is rapidly entering an aging society unprecedentedly fast on a global scale, the increase in single-person households has evolved loneliness from a personal issue to a social problem, manifested in an increase in solitary deaths and reclusive individuals. This research sheds light on one aspect of these social phenomena through the analysis of data from a large online community.