• Title/Summary/Keyword: Research Information Systems

Search Result 12,210, Processing Time 0.048 seconds

A Study on World University Evaluation Systems: Focusing on U-Multirank of the European Union (유럽연합의 세계 대학 평가시스템 '유-멀티랭크' 연구)

  • Lee, Tae-Young
    • Korean Journal of Comparative Education
    • /
    • v.27 no.4
    • /
    • pp.187-209
    • /
    • 2017
  • The purpose of this study was to highlight the necessity of a conceptual reestablishment of world university evaluations. The hitherto most well-known and validated world university evaluation systems such as Times Higher Education (THE), Quacquarelli Symonds (QS) or Academic Ranking of World Universities (ARWU) primarily assess big universities with quantitative evaluation indicators and performance results in the rankings. Those Systems have instigated a kind of elitism in higher education and neglect numerous small or local institutions of higher education, instead of providing stakeholders with comprehensive information about the real possibilities of tertiary education so that they can choose an institution that is individually tailored to their needs. Also, the management boards of universities and policymakers in higher education have partly been manipulated by and partly taken advantage of the elitist ranking systems with an economic emphasis, as indicated by research-centered evaluations and industry-university cooperation. To supplement such educational defects and to redress the lack of world university evaluation systems, a new system called 'U-Multirank' has been implemented with the financial support of the European Commission since 2012. U-Multirank was designed and is enforced by an international team of project experts led by CHE(Centre for Higher Education/Germany), CHEPS(Center for Higher Education Policy Studies/Netherlands) and CWTS(Centre for Science and Technology Studies at Leiden University/Netherlands). The significant features of U-Multirank, compared with e.g., THE and ARWU, are its qualitative, multidimensional, user-oriented and individualized assessment methods. Above all, its website and its assessment results, based on a mobile operating system and designed simply for international users, present a self-organized and evolutionary model of world university evaluation systems in the digital and global era. To estimate the universal validity of the redefinition of the world university evaluation system using U-Multirank, an epistemological approach will be used that relies on Edgar Morin's Complexity Theory and Karl Popper's Philosophy of Science.

Performance Optimization of Numerical Ocean Modeling on Cloud Systems (클라우드 시스템에서 해양수치모델 성능 최적화)

  • JUNG, KWANGWOOG;CHO, YANG-KI;TAK, YONG-JIN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.3
    • /
    • pp.127-143
    • /
    • 2022
  • Recently, many attempts to run numerical ocean models in cloud computing environments have been tried actively. A cloud computing environment can be an effective means to implement numerical ocean models requiring a large-scale resource or quickly preparing modeling environment for global or large-scale grids. Many commercial and private cloud computing systems provide technologies such as virtualization, high-performance CPUs and instances, ether-net based high-performance-networking, and remote direct memory access for High Performance Computing (HPC). These new features facilitate ocean modeling experimentation on commercial cloud computing systems. Many scientists and engineers expect cloud computing to become mainstream in the near future. Analysis of the performance and features of commercial cloud services for numerical modeling is essential in order to select appropriate systems as this can help to minimize execution time and the amount of resources utilized. The effect of cache memory is large in the processing structure of the ocean numerical model, which processes input/output of data in a multidimensional array structure, and the speed of the network is important due to the communication characteristics through which a large amount of data moves. In this study, the performance of the Regional Ocean Modeling System (ROMS), the High Performance Linpack (HPL) benchmarking software package, and STREAM, the memory benchmark were evaluated and compared on commercial cloud systems to provide information for the transition of other ocean models into cloud computing. Through analysis of actual performance data and configuration settings obtained from virtualization-based commercial clouds, we evaluated the efficiency of the computer resources for the various model grid sizes in the virtualization-based cloud systems. We found that cache hierarchy and capacity are crucial in the performance of ROMS using huge memory. The memory latency time is also important in the performance. Increasing the number of cores to reduce the running time for numerical modeling is more effective with large grid sizes than with small grid sizes. Our analysis results will be helpful as a reference for constructing the best computing system in the cloud to minimize time and cost for numerical ocean modeling.

Customer Behavior Prediction of Binary Classification Model Using Unstructured Information and Convolution Neural Network: The Case of Online Storefront (비정형 정보와 CNN 기법을 활용한 이진 분류 모델의 고객 행태 예측: 전자상거래 사례를 중심으로)

  • Kim, Seungsoo;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.221-241
    • /
    • 2018
  • Deep learning is getting attention recently. The deep learning technique which had been applied in competitions of the International Conference on Image Recognition Technology(ILSVR) and AlphaGo is Convolution Neural Network(CNN). CNN is characterized in that the input image is divided into small sections to recognize the partial features and combine them to recognize as a whole. Deep learning technologies are expected to bring a lot of changes in our lives, but until now, its applications have been limited to image recognition and natural language processing. The use of deep learning techniques for business problems is still an early research stage. If their performance is proved, they can be applied to traditional business problems such as future marketing response prediction, fraud transaction detection, bankruptcy prediction, and so on. So, it is a very meaningful experiment to diagnose the possibility of solving business problems using deep learning technologies based on the case of online shopping companies which have big data, are relatively easy to identify customer behavior and has high utilization values. Especially, in online shopping companies, the competition environment is rapidly changing and becoming more intense. Therefore, analysis of customer behavior for maximizing profit is becoming more and more important for online shopping companies. In this study, we propose 'CNN model of Heterogeneous Information Integration' using CNN as a way to improve the predictive power of customer behavior in online shopping enterprises. In order to propose a model that optimizes the performance, which is a model that learns from the convolution neural network of the multi-layer perceptron structure by combining structured and unstructured information, this model uses 'heterogeneous information integration', 'unstructured information vector conversion', 'multi-layer perceptron design', and evaluate the performance of each architecture, and confirm the proposed model based on the results. In addition, the target variables for predicting customer behavior are defined as six binary classification problems: re-purchaser, churn, frequent shopper, frequent refund shopper, high amount shopper, high discount shopper. In order to verify the usefulness of the proposed model, we conducted experiments using actual data of domestic specific online shopping company. This experiment uses actual transactions, customers, and VOC data of specific online shopping company in Korea. Data extraction criteria are defined for 47,947 customers who registered at least one VOC in January 2011 (1 month). The customer profiles of these customers, as well as a total of 19 months of trading data from September 2010 to March 2012, and VOCs posted for a month are used. The experiment of this study is divided into two stages. In the first step, we evaluate three architectures that affect the performance of the proposed model and select optimal parameters. We evaluate the performance with the proposed model. Experimental results show that the proposed model, which combines both structured and unstructured information, is superior compared to NBC(Naïve Bayes classification), SVM(Support vector machine), and ANN(Artificial neural network). Therefore, it is significant that the use of unstructured information contributes to predict customer behavior, and that CNN can be applied to solve business problems as well as image recognition and natural language processing problems. It can be confirmed through experiments that CNN is more effective in understanding and interpreting the meaning of context in text VOC data. And it is significant that the empirical research based on the actual data of the e-commerce company can extract very meaningful information from the VOC data written in the text format directly by the customer in the prediction of the customer behavior. Finally, through various experiments, it is possible to say that the proposed model provides useful information for the future research related to the parameter selection and its performance.

A Study on Systems Analysis Applied to Library Management (도서관경영(圖書館經營)에 있어서의 시스팀 분석기법응용(分析技法應用)에 관한 연구(硏究))

  • Gweon, Gyi-Won
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.2 no.1
    • /
    • pp.178-210
    • /
    • 1974
  • It needs to put into practice the systems analysis in the analysis of some operations and status of library for the purpose of systematizing the work of reforming in the new easier form to process, to storage, to retrieve and to make use of the increasing informations and data of library. In this study, some of systems which are generally using in every library was caught in the case study of K university library. Having analyzed them with the two methods of the flowcharting and mathematical analysis, we found the obstructive factors in operation. As the result of this research, it was gained the new system as the alternative one. A. Alternative System B. Advantages of alternative systems 1. In the reference room When it converts the present system into the new system, it can profit 6.771 won/user (13.815won-7.044won=6.771 won). Therefore, a half the average required cost of the present system can be saved. If this saving would be alloted for the cost 33,000won required to make the cataloging cards, it would be taken for 94 days (33,000 won ${\div}$ 6,771 won/user=4,874users. 4,874users ${\div}$ 52users/day=94days) to get it. The saving cost/year by the new system will be 95,417 won, and in the first year the initial cost (33,000won) reduces the saving cost to 62,417won. 2. In the periodical room The average required time for using the materials of the present system is 17 minutes/user and the average required cost/user is 23.775won, while the average required time of the new system is 4 minutes and the average required cost/user is 5.33won. Therefore, the new system has profit 4 times of the present system. Accordingly, it occurs when the dispersed periodical materials get together. 3. In the classification and cataloging When one processes - the oriental books - by the Linear Programming Technique, the maximum of the process can be increased from 11.6 volumes per librarian of the present system to 12 volumes per librarian of the new system increased 0.4 volume in a day, and cataloging by the manual printer can be shorten from 3 minutes per card of the present system to 1.5 minutes per card of the new system. Consequently, we can complete the other operations (books equipment, updating of cataloging cards, etc.) with 141 minutes which are saved in the course of the afore-mentioned works. 4. In the status of collections The average growth rate of 4 years from 1968 to 1971 is 9.825 %, and that of the purchased materials is 6.2% similar to the advanced nations, but it has the different position from 215,000 volumes by the Standard Degree for Establishment of College and University, and the difference between the total collections 151,671 volumes and Dunns' growth model ($N_t=N_oe^{-at}$) claimed by Leimkuhler 155,297 volumes in 1971 is 3,626 volumes, and for the purpose of compensation the difference, we found the fact that it needs to have the increased budget of 24~30% per year, Thus, if the budget of 24~30 % per year. Thus, if the budget would be increased per year as the rate of the afore-mentioned figure, it would be reached at the Standard Degree for Establishment of College and University in 1975, and thereafter, it can be decreased to the lebel which is able to maintain the growth rate of 5~6% per year.

  • PDF

Factors Affecting the Implementation Success of Data Warehousing Systems (데이터 웨어하우징의 구현성공과 시스템성공 결정요인)

  • Kim, Byeong-Gon;Park, Sun-Chang;Kim, Jong-Ok
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2007.05a
    • /
    • pp.234-245
    • /
    • 2007
  • The empirical studies on the implementation of data warehousing systems (DWS) are lacking while there exist a number of studies on the implementation of IS. This study intends to examine the factors affecting the implementation success of DWS. The study adopts the empirical analysis of the sample of 112 responses from DWS practitioners. The study results suggest several implications for researchers and practitioners. First, when the support from top management becomes great, the implementation success of DWS in organizational aspects is more likely. When the support from top management exists, users are more likely to be encouraged to use DWS, and organizational resistance to use DWS is well coped with increasing the possibility of implementation success of DWS. The support of resource increases the implementation success of DWS in project aspects while it is not significantly related to the implementation success of DWS in organizational aspects. The support of funds, human resources, and other efforts enhances the possibility of successful implementation of project; the project does not exceed the time and resource budgets and meet the functional requirements. The effect of resource support, however, is not significantly related to the organizational success. The user involvement in systems implementation affects the implementation success of DWS in organizational and project aspects. The success of DWS implementation is significantly related to the users' commitment to the project and the proactive involvement in the implementation tasks. users' task. The observation of the behaviors of competitors which possibly increases data quality does not affect the implementation success of DWS. This indicates that the quality of data such as data consistency and accuracy is not ensured through the understanding of the behaviors of competitors, and this does not affect the data integration and the successful implementation of DWS projects. The prototyping for the DWS implementation positively affects the implementation success of DWS. This indicates that the extent of understanding requirements and the communication among project members increases the implementation success of DWS. Developing the prototypes for DWS ensures the acquirement of accurate or integrated data, the flexible processing of data, and the adaptation into new organizational conditions. The extent of consulting activities in DWS projects increases the implementation success of DWS in project aspects. The continuous support for consulting activities and technology transfer enhances the adherence to the project schedule preventing the exceeding use of project budget and ensuring the implementation of intended system functions; this ultimately leads to the successful implementation of DWS projects. The research hypothesis that the capability of project teams affects the implementation success of DWS is rejected. The technical ability of team members and human relationship skills themselves do not affect the successful implementation of DWS projects. The quality of the system which provided data to DWS affects the implementation success of DWS in technical aspects. The standardization of data definition and the commitment to the technical standard increase the possibility of overcoming the technical problems of DWS. Further, the development technology of DWS affects the implementation success of DWS. The hardware, software, implementation methodology, and implementation tools contribute to effective integration and classification of data in various forms. In addition, the implementation success of DWS in organizational and project aspects increases the data quality and system quality of DWS while the implementation success of DWS in technical aspects does not affect the data quality and system quality of DWS. The data and systems quality increases the effective processing of individual tasks, and reduces the decision making times and efforts enhancing the perceived benefits of DWS.

  • PDF

Region of Interest Extraction and Bilinear Interpolation Application for Preprocessing of Lipreading Systems (입 모양 인식 시스템 전처리를 위한 관심 영역 추출과 이중 선형 보간법 적용)

  • Jae Hyeok Han;Yong Ki Kim;Mi Hye Kim
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.4
    • /
    • pp.189-198
    • /
    • 2024
  • Lipreading is one of the important parts of speech recognition, and several studies have been conducted to improve the performance of lipreading in lipreading systems for speech recognition. Recent studies have used method to modify the model architecture of lipreading system to improve recognition performance. Unlike previous research that improve recognition performance by modifying model architecture, we aim to improve recognition performance without any change in model architecture. In order to improve the recognition performance without modifying the model architecture, we refer to the cues used in human lipreading and set other regions such as chin and cheeks as regions of interest along with the lip region, which is the existing region of interest of lipreading systems, and compare the recognition rate of each region of interest to propose the highest performing region of interest In addition, assuming that the difference in normalization results caused by the difference in interpolation method during the process of normalizing the size of the region of interest affects the recognition performance, we interpolate the same region of interest using nearest neighbor interpolation, bilinear interpolation, and bicubic interpolation, and compare the recognition rate of each interpolation method to propose the best performing interpolation method. Each region of interest was detected by training an object detection neural network, and dynamic time warping templates were generated by normalizing each region of interest, extracting and combining features, and mapping the dimensionality reduction of the combined features into a low-dimensional space. The recognition rate was evaluated by comparing the distance between the generated dynamic time warping templates and the data mapped to the low-dimensional space. In the comparison of regions of interest, the result of the region of interest containing only the lip region showed an average recognition rate of 97.36%, which is 3.44% higher than the average recognition rate of 93.92% in the previous study, and in the comparison of interpolation methods, the bilinear interpolation method performed 97.36%, which is 14.65% higher than the nearest neighbor interpolation method and 5.55% higher than the bicubic interpolation method. The code used in this study can be found a https://github.com/haraisi2/Lipreading-Systems.

A Study on Web-based Technology Valuation System (웹기반 지능형 기술가치평가 시스템에 관한 연구)

  • Sung, Tae-Eung;Jun, Seung-Pyo;Kim, Sang-Gook;Park, Hyun-Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.23-46
    • /
    • 2017
  • Although there have been cases of evaluating the value of specific companies or projects which have centralized on developed countries in North America and Europe from the early 2000s, the system and methodology for estimating the economic value of individual technologies or patents has been activated on and on. Of course, there exist several online systems that qualitatively evaluate the technology's grade or the patent rating of the technology to be evaluated, as in 'KTRS' of the KIBO and 'SMART 3.1' of the Korea Invention Promotion Association. However, a web-based technology valuation system, referred to as 'STAR-Value system' that calculates the quantitative values of the subject technology for various purposes such as business feasibility analysis, investment attraction, tax/litigation, etc., has been officially opened and recently spreading. In this study, we introduce the type of methodology and evaluation model, reference information supporting these theories, and how database associated are utilized, focusing various modules and frameworks embedded in STAR-Value system. In particular, there are six valuation methods, including the discounted cash flow method (DCF), which is a representative one based on the income approach that anticipates future economic income to be valued at present, and the relief-from-royalty method, which calculates the present value of royalties' where we consider the contribution of the subject technology towards the business value created as the royalty rate. We look at how models and related support information (technology life, corporate (business) financial information, discount rate, industrial technology factors, etc.) can be used and linked in a intelligent manner. Based on the classification of information such as International Patent Classification (IPC) or Korea Standard Industry Classification (KSIC) for technology to be evaluated, the STAR-Value system automatically returns meta data such as technology cycle time (TCT), sales growth rate and profitability data of similar company or industry sector, weighted average cost of capital (WACC), indices of industrial technology factors, etc., and apply adjustment factors to them, so that the result of technology value calculation has high reliability and objectivity. Furthermore, if the information on the potential market size of the target technology and the market share of the commercialization subject refers to data-driven information, or if the estimated value range of similar technologies by industry sector is provided from the evaluation cases which are already completed and accumulated in database, the STAR-Value is anticipated that it will enable to present highly accurate value range in real time by intelligently linking various support modules. Including the explanation of the various valuation models and relevant primary variables as presented in this paper, the STAR-Value system intends to utilize more systematically and in a data-driven way by supporting the optimal model selection guideline module, intelligent technology value range reasoning module, and similar company selection based market share prediction module, etc. In addition, the research on the development and intelligence of the web-based STAR-Value system is significant in that it widely spread the web-based system that can be used in the validation and application to practices of the theoretical feasibility of the technology valuation field, and it is expected that it could be utilized in various fields of technology commercialization.

Application Plan of Goods Information in the Public Procurement Service for Enhancing U-City Plans (U-City계획 고도화를 위한 조달청 물품정보 활용 방안 : CCTV 사례를 중심으로)

  • PARK, Jun-Ho;PARK, Jeong-Woo;NAM, Kwang-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.3
    • /
    • pp.21-34
    • /
    • 2015
  • In this study, a reference model is constructed that provides architects or designers with sufficient information on the intelligent service facility that is essential for U-City space configuration, and for the support of enhanced design, as well as for planning activities. At the core of the reference model is comprehensive information about the intelligent service facility that plans the content of services, and the latest related information that is regularly updated. A plan is presented to take advantage of the database of list information systems in the Public Procurement Service that handles intelligent service facilities. We suggest a number of improvements by analyzing the current status of, and issues with, the goods information in the Public Procurement Service, and by conducting a simulation for the proper placement of CCTV. As the design of U-City plan has evolved from IT technology-based to smart space-based, reviews of limitations such as the lack of standards, information about the installation, and the placement of the intelligent service facility that provides U-service have been carried out. Due to the absence of relevant legislation and guidelines, however, planning activities, such as the appropriate placement of the intelligent service facility are difficult when considering efficient service provision. In addition, with the lack of information about IT technology and intelligent service facilities that can be provided to U-City planners and designers, there are a number of difficulties when establishing an optimal plan with respect to service level and budget. To solve these problems, this study presents a plan in conjunction with the goods information from the Public Procurement Service. The Public Procurement Service has already built an industry-related database of around 260,000 cases, which has been continually updated. It can be a very useful source of information about the intelligent service facility, the ever-changing U-City industry's core, and the relevant technologies. However, since providing this information is insufficient in the application process and, due to the constraints in the information disclosure process, there have been some issues in its application. Therefore, this study, by presenting an improvement plan for the linkage and application of the goods information in the Public Procurement Service, has significance for the provision of the basic framework for future U-City enhancement plans, and multi-departments' common utilization of the goods information in the Public Procurement Service.

The Effect of Corporate SNS Marketing on User Behavior: Focusing on Facebook Fan Page Analytics (기업의 SNS 마케팅 활동이 이용자 행동에 미치는 영향: 페이스북 팬페이지 애널리틱스를 중심으로)

  • Jeon, Hyeong-Jun;Seo, Bong-Goon;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.75-95
    • /
    • 2020
  • With the growth of social networks, various forms of SNS have emerged. Based on various motivations for use such as interactivity, information exchange, and entertainment, SNS users are also on the fast-growing trend. Facebook is the main SNS channel, and companies have started using Facebook pages as a public relations channel. To this end, in the early stages of operation, companies began to secure a number of fans, and as a result, the number of corporate Facebook fans has recently increased to as many as millions. from a corporate perspective, Facebook is attracting attention because it makes it easier for you to meet the customers you want. Facebook provides an efficient advertising platform based on the numerous data it has. Advertising targeting can be conducted using their demographic characteristics, behavior, or contact information. It is optimized for advertisements that can expose information to a desired target, so that results can be obtained more effectively. it rethink and communicate corporate brand image to customers through contents. The study was conducted through Facebook advertising data, and could be of great help to business people working in the online advertising industry. For this reason, the independent variables used in the research were selected based on the characteristics of the content that the actual business is concerned with. Recently, the company's Facebook page operation goal is to go beyond securing the number of fan pages, branding to promote its brand, and further aiming to communicate with major customers. the main figures for this assessment are Facebook's 'OK', 'Attachment', 'Share', and 'Number of Click' which are the dependent variables of this study. in order to measure the outcome of the target, the consumer's response is set as a key measurable key performance indicator (KPI), and a strategy is set and executed to achieve this. Here, KPI uses Facebook's ad numbers 'reach', 'exposure', 'like', 'share', 'comment', 'clicks', and 'CPC' depending on the situation. in order to achieve the corresponding figures, the consideration of content production must be prior, and in this study, the independent variables were organized by dividing into three considerations for content production into three. The effects of content material, content structure, and message styles on Facebook's user behavior were analyzed using regression analysis. Content materials are related to the content's difficulty, company relevance, and daily involvement. According to existing research, it was very important how the content would attract users' interest. Content could be divided into informative content and interesting content. Informational content is content related to the brand, and information exchange with users is important. Interesting content is defined as posts that are not related to brands related to interesting movies or anecdotes. Based on this, this study started with the assumption that the difficulty, company relevance, and daily involvement have an effect on the dependent variable. In addition, previous studies have found that content types affect Facebook user activity. I think it depends on the combination of photos and text used in the content. Based on this study, the actual photos were used and the hashtag and independent variables were also examined. Finally, we focused on the advertising message. In the previous studies, the effect of advertising messages on users was different depending on whether they were narrative or non-narrative, and furthermore, the influence on message intimacy was different. In this study, we conducted research on the behavior that Facebook users' behavior would be different depending on the language and formality. For dependent variables, 'OK' and 'Full Click Count' are set by every user's action on the content. In this study, we defined each independent variable in the existing study literature and analyzed the effect on the dependent variable, and found that 'good' factors such as 'self association', 'actual use', and 'hidden' are important. Could. Material difficulties', 'actual participation' and 'large scale * difficulties'. In addition, variables such as 'Self Connect', 'Actual Engagement' and 'Sexual Sexual Attention' have been shown to have a significant impact on 'Full Click'. It is expected that through research results, it is possible to contribute to the operation and production strategy of company Facebook operators and content creators by presenting a content strategy optimized for the purpose of the content. In this study, we defined each independent variable in the existing research literature and analyzed its effect on the dependent variable, and we could see that factors on 'good' were significant such as 'self-association', 'reality use', 'concernal material difficulty', 'real-life involvement' and 'massive*difficulty'. In addition, variables such as 'self-connection', 'real-life involvement' and 'formative*attention' were shown to have significant effects for 'full-click'. Through the research results, it is expected that by presenting an optimized content strategy for content purposes, it can contribute to the operation and production strategy of corporate Facebook operators and content producers.

Context Prediction Using Right and Wrong Patterns to Improve Sequential Matching Performance for More Accurate Dynamic Context-Aware Recommendation (보다 정확한 동적 상황인식 추천을 위해 정확 및 오류 패턴을 활용하여 순차적 매칭 성능이 개선된 상황 예측 방법)

  • Kwon, Oh-Byung
    • Asia pacific journal of information systems
    • /
    • v.19 no.3
    • /
    • pp.51-67
    • /
    • 2009
  • Developing an agile recommender system for nomadic users has been regarded as a promising application in mobile and ubiquitous settings. To increase the quality of personalized recommendation in terms of accuracy and elapsed time, estimating future context of the user in a correct way is highly crucial. Traditionally, time series analysis and Makovian process have been adopted for such forecasting. However, these methods are not adequate in predicting context data, only because most of context data are represented as nominal scale. To resolve these limitations, the alignment-prediction algorithm has been suggested for context prediction, especially for future context from the low-level context. Recently, an ontological approach has been proposed for guided context prediction without context history. However, due to variety of context information, acquiring sufficient context prediction knowledge a priori is not easy in most of service domains. Hence, the purpose of this paper is to propose a novel context prediction methodology, which does not require a priori knowledge, and to increase accuracy and decrease elapsed time for service response. To do so, we have newly developed pattern-based context prediction approach. First of ail, a set of individual rules is derived from each context attribute using context history. Then a pattern consisted of results from reasoning individual rules, is developed for pattern learning. If at least one context property matches, say R, then regard the pattern as right. If the pattern is new, add right pattern, set the value of mismatched properties = 0, freq = 1 and w(R, 1). Otherwise, increase the frequency of the matched right pattern by 1 and then set w(R,freq). After finishing training, if the frequency is greater than a threshold value, then save the right pattern in knowledge base. On the other hand, if at least one context property matches, say W, then regard the pattern as wrong. If the pattern is new, modify the result into wrong answer, add right pattern, and set frequency to 1 and w(W, 1). Or, increase the matched wrong pattern's frequency by 1 and then set w(W, freq). After finishing training, if the frequency value is greater than a threshold level, then save the wrong pattern on the knowledge basis. Then, context prediction is performed with combinatorial rules as follows: first, identify current context. Second, find matched patterns from right patterns. If there is no pattern matched, then find a matching pattern from wrong patterns. If a matching pattern is not found, then choose one context property whose predictability is higher than that of any other properties. To show the feasibility of the methodology proposed in this paper, we collected actual context history from the travelers who had visited the largest amusement park in Korea. As a result, 400 context records were collected in 2009. Then we randomly selected 70% of the records as training data. The rest were selected as testing data. To examine the performance of the methodology, prediction accuracy and elapsed time were chosen as measures. We compared the performance with case-based reasoning and voting methods. Through a simulation test, we conclude that our methodology is clearly better than CBR and voting methods in terms of accuracy and elapsed time. This shows that the methodology is relatively valid and scalable. As a second round of the experiment, we compared a full model to a partial model. A full model indicates that right and wrong patterns are used for reasoning the future context. On the other hand, a partial model means that the reasoning is performed only with right patterns, which is generally adopted in the legacy alignment-prediction method. It turned out that a full model is better than a partial model in terms of the accuracy while partial model is better when considering elapsed time. As a last experiment, we took into our consideration potential privacy problems that might arise among the users. To mediate such concern, we excluded such context properties as date of tour and user profiles such as gender and age. The outcome shows that preserving privacy is endurable. Contributions of this paper are as follows: First, academically, we have improved sequential matching methods to predict accuracy and service time by considering individual rules of each context property and learning from wrong patterns. Second, the proposed method is found to be quite effective for privacy preserving applications, which are frequently required by B2C context-aware services; the privacy preserving system applying the proposed method successfully can also decrease elapsed time. Hence, the method is very practical in establishing privacy preserving context-aware services. Our future research issues taking into account some limitations in this paper can be summarized as follows. First, user acceptance or usability will be tested with actual users in order to prove the value of the prototype system. Second, we will apply the proposed method to more general application domains as this paper focused on tourism in amusement park.