• Title/Summary/Keyword: Research Information Systems

Search Result 12,220, Processing Time 0.059 seconds

A Study on the Improvement of Domestic Navigation Safety System: Focused on the Implementation of Korea Augmentation Satellite System (국내 항행안전시스템의 개선에 관한 연구: 한국형 정밀위성항법 보강시스템의 구축을 중심으로)

  • Kim, Yeong-Pil;Hwang, Kyung Tae
    • Journal of Digital Convergence
    • /
    • v.19 no.2
    • /
    • pp.221-230
    • /
    • 2021
  • The study attempts to suggest potential problem and solutions expected in the process of implementing KASS, which is currently under development to improve the domestic navigation safety system, and to summarize improvement effects of domestic navigation safety system anticipated by the implementation of KASS. Challenges expected in the process of implementing KASS exists in four aspects: emotional, technical, cost, safety aspects. When KASS is implemented and operates, various benefits can be realized. Benefits include cost savings by not using navigation safety systems during takeoff and landing; reduction of flight delays and cancellations by removing airway congestion; increase of aircraft accommodation capacity; reduction of carbon emissions; preparation for future aviation demands and improvement of air transportation safety; and reduction of flight accidents. In conclusion, it is expected to enter into an era of more intense competition due to increased aviation demands. In order to survive in this competitive environment, early introduction of KASS is indispensable. Analysis results of this study are expected to provide reference information for academic research in this area. A possible future research topic include a study predicting the changes in the navigation safety systems introduced by KASS and proposing practical and useful ways to respond the changes.

A study on Deep Operations Effect Analysis for Realization of Simultaneous Offense-Defence Integrated Operations (공방동시통합작전 구현을 위한 종심작전 효과분석 연구)

  • Cho, Jung Keun;Yoo, Byung Joo;Han, Do Heon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.116-126
    • /
    • 2021
  • Ground Component Command (GCC) has been developing operational planning and execution systems to implement "Decisive Integrated Operations", which is the concept of ground operations execution, and achieved remarkable results. In particular, "Simultaneous Offense-Defense Integrated Operations" is developed mainly to neutralize enemies in deep areas and develop favorable conditions for the allies early by simultaneously attacking and defending from the beginning of the war. On the other hand, it is limited to providing scientific and reasonable support for the commander's decision-making process because analyzing the effects of the deep operation with existing M&S systems is impossible. This study developed a model for analyzing the effects of deep operations that can be used in the KJCCS. Previous research was conducted on the effects of surveillance, physical strike, and non-physical strike, which are components of deep operations to find the characteristics and limitations and suggest a research direction. A methodology for analyzing the effects of deep operations reflecting the interactions of components using data was then developed by the GCC, and input data for each field was calculated through combat experiments and a literature review. Finally, the Deep operations Effect CAlculating Model(DECAM) was developed and distributed to the GCC and Corps battle staff during the ROK-US Combined Exercise. Through this study, the effectiveness of the methodology and the developed model were confirmed and contribute to the development of the GCC and Corps' abilities to perform deep operations.

A Framework Development for Sketched Data-Driven Building Information Model Creation to Support Efficient Space Configuration and Building Performance Analysis (효율적 공간 형상화 및 건물성능분석을 위한 스케치 정보 기반 BIM 모델 자동생성 프레임워크 개발)

  • Kong, ByungChan;Jeong, WoonSeong
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.1
    • /
    • pp.50-61
    • /
    • 2024
  • The market for compact houses is growing due to the demand for floor plans prioritizing user needs. However, clients often have difficulty communicating their spatial requirements to professionals including architects because they lack the means to provide evidence, such as spatial configurations or cost estimates. This research aims to create a framework that can translate sketched data-driven spatial requirements into 3D building components in BIM models to facilitate spatial understanding and provide building performance analysis to aid in budgeting in the early design phase. The research process includes developing a process model, implementing, and validating the framework. The process model describes the data flow within the framework and identifies the required functionality. Implementation involves creating systems and user interfaces to integrate various systems. The validation verifies that the framework can automatically convert sketched space requirements into walls, floors, and roofs in a BIM model. The framework can also automatically calculate material and energy costs based on the BIM model. The developed frame enables clients to efficiently create 3D building components based on the sketched data and facilitates users to understand the space and analyze the building performance through the created BIM models.

An Empirical Study of Temporal Navigation System for Time-based Contents: Focused on Digital TV Systems (시간 기반 컨텐츠를 위한 항해 시스템에 대한 실증적 연구 : 디지털 TV를 중심으로)

  • 김현호;김진우;박경욱;박준아
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.10
    • /
    • pp.944-954
    • /
    • 2003
  • People are experiencing severe problems in temporal navigation as time-based contents and platforms become more popular Relatively limited research, however, has been conducted on temporal navigation compared to that on spatial navigation. This research aims to identify efficient temporal navigation aids for time-based contents. It proposes Time Navigator, a new temporal navigation system based on the episodic indexing theory, and evaluates its efficiency through two experiments with a computer-based simulator for digital TV The video contents of digital TV was focused on because it is one of the most representative time-based contents and platforms. Our results indicate that Time Navigator helps people navigate time -based contents more effectively. Its effects increase as the contents include more narratives.

The Impact of Factors on Consumers' Conspicuous Consumption (고객의 과시소비에 영향을 미치는 요인 연구)

  • Byeon, Hyeonsu
    • Journal of Service Research and Studies
    • /
    • v.6 no.2
    • /
    • pp.201-214
    • /
    • 2016
  • The main purpose of this paper was to review how luxury value is related to the consumer's conspicuous consumption and purchasing intention. The author formed luxury value which is including financial, functional, social, and individual value. In order to obtain the research results, the author conducted a survey and implemented statistical treatments. The results can be proposed as follows: First, financial, functional, social, and individual value was positively influencing on conspicuous consumption. Second, conspicuous consumption was impacting on intention to purchase. Third, it was suggested that the relative effect of individual value on conspicuous consumption was greater than other values. Thus it was concluded that consumers put a high value on conspicuous consumption.

Development of a Model for Managing Chemical Substances in Korea with Emphasis on Cleaning Solvents (우리나라의 화학물질 관리모델 개발: 세정용 유기용제를 중심으로)

  • Roh, Young-Man;Kim, Chi Nyon;Kim, Kang Yoon;Han, Jin Gu;Ko, Won Kyung;Yoon, Mi Youn;Park, Seoung-Hyun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.10 no.1
    • /
    • pp.179-207
    • /
    • 2000
  • Hazardous organic solvents management as prescribed by presidential decree in Korea is reviewed. The status of import, manufacture, and circulation of organic solvents was investigated. Problems inherent in the management of organic solvents in the electroplating, metal degreasing, and dry cleaning industries were discussed. The chemical substance management system in Korea was compared to those of foreign organizations. A walk-through check list was developed and then used to assess the actual conditions and potential hazards of chemical substances in these industries. The questionnaire could be used to develop a chemical management system and protect workers from hazardous substances. Based on the results of the site survey, MSDSs were not integrated appropriately into the workers education and were not readily accessible to employees. In the case of the dry cleaning industry, the new dry cleaning solvent used as a substitute includes a lot of potentially hazardous organic solvents. This research is preliminary. It is recommended that a national survey be performed to better identify the current situation. Because chemical substances are regulated by thirteen laws in seven executive branches, management systems often overlap, resulting in ineffective control. Using the above results, a model for managing chemical substances was developed. This will more efficiently provide MSDS information to workers covered by the presidential decree and allow the construction of a management system database for better cooperation with the executive branches in Korea.

  • PDF

Classification of Mental States Based on Spatiospectral Patterns of Brain Electrical Activity

  • Hwang, Han-Jeong;Lim, Jeong-Hwan;Im, Chang-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.15-24
    • /
    • 2012
  • Classification of human thought is an emerging research field that may allow us to understand human brain functions and further develop advanced brain-computer interface (BCI) systems. In the present study, we introduce a new approach to classify various mental states from noninvasive electrophysiological recordings of human brain activity. We utilized the full spatial and spectral information contained in the electroencephalography (EEG) signals recorded while a subject is performing a specific mental task. For this, the EEG data were converted into a 2D spatiospectral pattern map, of which each element was filled with 1, 0, and -1 reflecting the degrees of event-related synchronization (ERS) and event-related desynchronization (ERD). We evaluated the similarity between a current (input) 2D pattern map and the template pattern maps (database), by taking the inner-product of pattern matrices. Then, the current 2D pattern map was assigned to a class that demonstrated the highest similarity value. For the verification of our approach, eight participants took part in the present study; their EEG data were recorded while they performed four different cognitive imagery tasks. Consistent ERS/ERD patterns were observed more frequently between trials in the same class than those in different classes, indicating that these spatiospectral pattern maps could be used to classify different mental states. The classification accuracy was evaluated for each participant from both the proposed approach and a conventional mental state classification method based on the inter-hemispheric spectral power asymmetry, using the leave-one-out cross-validation (LOOCV). An average accuracy of 68.13% (${\pm}9.64%$) was attained for the proposed method; whereas an average accuracy of 57% (${\pm}5.68%$) was attained for the conventional method (significance was assessed by the one-tail paired $t$-test, $p$ < 0.01), showing that the proposed simple classification approach might be one of the promising methods in discriminating various mental states.

Development of a Real-time Error-detection System;The Case study of an Electronic Jacquard

  • Huh, Jae-Yeong;Seo, Chang-Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2588-2593
    • /
    • 2003
  • Any system has the possibility of an error occurrence. Even if trivial errors were occurred, the original system would be fatally affected by the occurring errors. Accordingly, the error detection must be demanded. In this paper, we developed a real-time error detection system would be able to apply to an electronic Jacquard system. A Jacquard is a machine, which controls warps while weaving textiles, for manufacturing patterned cloth. There are two types of mechanical and electronic Jacquard. An electronic Jacquard is better than a mechanical Jacquard in view of the productivity and realizability for weaving various cloths. Recent weaving industry is growing up increasingly due to the electronic Jacquard. But, the problem of wrong weaving from error data exists in the electronic Jacquard. In this research, a real-time error detection system for an electronic Jacquard is developed for detecting errors in an electronic Jacquard in real-time. The real-time system is constructed using PC-based embedded system architecture. The system detects the occurring errors in real-time by storing 1344 data transferred in serial from an electronic Jacquard into memory, and then by comparing synchronously 1344 data stored into memory with 1344 data in a design file before the next data would be transferred to the Jacquard for weaving. The information of detected errors are monitored to the screen and stored into a file in real-time as the outputs of the system. In this research, we solve the problem of wrong weaving through checking the weaving data and detecting the occurred errors of an electronic Jacquard in real-time.

  • PDF

Defect Length Measurement using Underwater Camera and A Laser Slit Beam

  • Kim, Young-Hwan;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.746-751
    • /
    • 2003
  • A method of measuring the length of defects on the wall of the spent nuclear fuel pool using the image processing and a laser slit beam is proposed. Since the defect monitoring camera is suspended by a crane and hinged to the crane hook, the camera viewing direction can not be adjusted to the orientation that is exactly perpendicular to the wall. Thus, the image taken by the camera, which is horizontally rotated along the axis of the camera supporting beam, is distorted and thus, the precise length can not be measured. In this paper, by using the LASER slit beam generator, the horizontally rotated angle of the camera is estimated. Once the angle is obtained, the distorted image can be easily reconstructed to the image normal to the wall. The estimation algorithm adopts a 3-dimensional coordinate transformation of the image plane where both the laser slit beam and the original image of the defects exist. The estimation equation is obtained by using the information of the beam projected on the wall and the parameters of this equation are experimentally obtained. With this algorithm, the original image of the defect taken at arbitrary rotated angle can be reconstructed to an image normal to the wall. From the result of a series of experiments, the accuracy of the defect is measured within 0.6 and 1.3 % error bound of real defect size in the air and underwater, respectively under 30 degree of the inclined angle of the laser slit beam generator. Also, the error increases as the inclined angle increases upto 60 degree. Over this angle, the defect length can not be measured since the defect image disappears. The proposed algorithm enables the accurate measurement of the defect length only by using a single camera and a laser slit beam.

  • PDF

A Study on the Development of Service Quality Scale in Traditional Market for Big Data Analysis

  • HWANG, Moon-Young
    • Korean Journal of Artificial Intelligence
    • /
    • v.7 no.1
    • /
    • pp.23-59
    • /
    • 2019
  • The purpose of this study is to develop a measure of service quality in the traditional market by examining previous research on the service quality of the traditional market studied so far. After defining basic concepts through definition of traditional market and existing studies, 5 categories of configuration items for SERVQUAL measurement in traditional market were made up based on existing researches related to definition of service quality and service quality of traditional market. A survey was conducted on the items that fit the intention of this study and various statistical analyzes were conducted. Statistical analysis was performed using SPSS 22.0 and AMOS 22.0. The reliability of the items was measured by the reliability test, and the predictability and accuracy of the items were examined. The validity of the measured variables was verified through confirmatory factor analysis. Reliability, empathy, responsiveness, certainty, and tangibility were the most important factors in this study. Responsiveness factors include communication, time reduction, real time, promptness. Assurance factors include the assurance of delivery, prompt answers, product knowledge items. Tangibility factors include, convenient device systems, location information, presence as a fact, and as a result, the latest modern items are adopted. The quality of service in the traditional market developed in this study was found to be good in reliability and validity test. Confirmatory factor analysis result using structural equation model also met the conformity index standard. If service satisfaction is measured based on this research, basic data can be presented to policy makers who implement policies on traditional markets to make the right decisions. In addition, it will be able to provide traditional market operators with operational strategy and marketing data. In the future, based on the traditional market service quality scale developed in this study, it is necessary to grasp the factors to be continuously managed to improve the service quality of the traditional market, user satisfaction, and intention to use.