• Title/Summary/Keyword: Research Information Systems

Search Result 12,220, Processing Time 0.04 seconds

Current Status and Perspective of Biological Assessments of Water Environment in Korea (우리나라 생물학적 물환경평가의 현황과 미래)

  • Hwang, Soon-Jin;Kim, Nan-Young;Won, Doo Hee;An, Kwang Kuk;Lee, Jae Kwan;Kim, Chang Soo;Shin, Jae-Ki
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.757-767
    • /
    • 2006
  • Biological assessments are the primary tool for evaluating the biological condition of a water body and makes it possible to understand accumulative and long-term effect of stressors. They also provide reliable biological information for which disturbed systems are to be restored. Sustainable water environment is not enough with attaining only the clean water, but it should sustain healthy and diverse aquatic life. Aquatic organisms are affected by various factors, including not only water quality but also habitat condition and stressors, and thus good condition of both physical and chemical water quality is prerequisite for sustaining healthy organisms. Therefore, biological assessment, along with other physical and chemical assessments, are crucial for evaluating the health of a water body. Overall, sustainability of water environment demands the attainment and maintenance of ecological integrity, which is resulted from the combination of physical, chemical and biological integrity. The biological criteria will play very important role in the water resource management and policy issues, and thus bioassessment program should be fully implemented and supported eventually by the law. To keep ecosystem health of water environment safely from the toxic pollutants and other stressors, the following suggestions need to be considered in environmental quality standards in Korea. For the first step, the biological indicators need to be introduced in evaluating river quality condition; they provide a qualitative description of biological condition of water body. Secondly, the biological water quality standards using biotic indices should be developed and implemented under the consideration of characteristics of Korean river systems. Lastly, the ecological status classification regime (ESCR) should be developed and introduced; it could be used in quality assessment of the water environment in general. In developing ESCR, integration of physico-chemical, biological, and habitat parameters should be taken into account.

A Study on Convergence Medical Efficacy of Native Chicken (재래닭의 의학적 효능 융복합연구)

  • Lee, Kang-Hyun;Park, Sang-Woo;Ji, Joong-Gu
    • Journal of Digital Convergence
    • /
    • v.13 no.9
    • /
    • pp.439-444
    • /
    • 2015
  • This study analyzes the chicken-related prescription shown in the literature summarized by standing tradition deliberate aims to investigate the clinical efficacy of native chickens. Therefore, The old traditional medicine books of native chickens translate and organize the relevant prescriptions. The manuscript old documents is prescribed by the old central documents sourced directly from generation to generation descendants technical publishing contemporary situation sake of the development of this unique formulation not only contemporary who established himself through numerous trials and errors. Browse almost circular in traditional medicine prescription, which is scattered throughout the country is difficult, and because of the loss can not be confirmed even its existence. This study is to establish the analysis and separated by organized to establish a database on the basis of prescription and mixed herbs in a variety of functional foods developed through usability evaluation methods of treatment. Therefore, the management systems of native chickens related to lack of knowledge and information to foster the continued expansion and specialized training and knowledge of the future growth engine industry through the added value of cultural projects of national knowledge resources. Finally, convergence research and evaluate the usefulness of native chickens through interdisciplinary research systems, and practical measures of functional foods and alternative medicine are presented as well.

A Study on the Integrated Type of the Cadastral System and Land Registration System in Foreign Countries (지적제도와 토지등기제도의 통합 사례에 관한 연구)

  • Ryu, Byoung-chan
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.1
    • /
    • pp.143-162
    • /
    • 2020
  • The purpose of this study is to derive the type by examining and analyzing the integrated cases of the Cadastral System (hereafter as CS.) and the Land Registration System (hereafter as LRS.) except for France, the Netherlands, Japan, and Taiwan introduced in Korea. As a result of the study, it was confirmed that the CS. and LRS. were integrated in Turkey, Indonesia, Hungary, Czech Republic, and Lithuania, and the following three types were drawn as a result of analyzing the integration case. First, the French type, the CS. and LRS. has been integrated since the establishment of the system, and the central and state governments are managed by one Administrative Agency, The basic municipalities include France and Turkey, which are managed by two separate agencies. Second, the Dutch type, there are Netherlands, Indonesia, and Lithuania, which are integrated and managed by one Administrative Agency since the creation of the CS. and LRS. Third, the Japanese type, there are Japan, Taiwan, Hungary, and Czech Republic which was separated from the creation of the CS. and the LRS. and the CS. was managed by the Administrative Agency and the LRS. was managed by the Judicial Agency. but after integrated both systems were managed by one Administrative Agency, Furthermore, CS. was managed by the Administrative Agency in all countries but LRS. was managed by the Judicial Agency in some countries. but after integrated both systems were managed by one Administrative Agency. I hope that active research on the integration of the CS. and LRS. will be carried out in the future, and hope that the results of this study will be used as basic data for research on how to integrate the CS. and LRS. in Korea.

Selection of Auditory Icons in Ship Bridge Alarm Management System Using the Sensibility Evaluation (감성평가를 이용한 선교알람관리시스템의 청각아이콘 평가)

  • Oh, Seungbin;Jang, Jun-Hyuk;Park, Jin Hyoung;Kim, Hongtae
    • Journal of Navigation and Port Research
    • /
    • v.37 no.4
    • /
    • pp.401-407
    • /
    • 2013
  • In parallel with the development of ship equipment, bridge systems have been improved, but marine accidents due to human error have not been reduced. Recently, research in nautical bridge equipment has focused on suitable ergonomic designs in order to reduce these errors due to human factors. In a bridge of a ship, there are numerous auditory signals that deliver important information clearly to the sailors. However, only a few studies have been conducted related to the human recognition of these auditory signals. There are three types of auditory signals: voice alarms, abstract sounds, and auditory icons. This study was conducted in order to design more appropriate auditory icons using a sensibility evaluation method. The auditory icons were rated to have five warning situations (engine failure, fire, steering failure, low power, and collision) using the Semantic Differential Method. It is expected that the results of this study will be used as basic data for auditory displays inside bridges and for integrated bridge alarm systems.

Traffic Signal Control Algorithm for Isolated Intersections Based on Travel Time (독립교차로의 통행시간 기반 신호제어 알고리즘)

  • Jeong, Youngje;Park, Sang Sup;Kim, Youngchan
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.6
    • /
    • pp.71-80
    • /
    • 2012
  • This research suggested a real-time traffic signal control algorithm using individual vehicle travel times on an isolated signal intersection. To collect IDs and passing times from individual vehicles, space-based surveillance systems such as DSRC were adopted. This research developed models to estimate arrival flow rates, delays, and the change rate in delay, by using individual vehicle's travel time data. This real-time signal control algorithm could determine optimal traffic signal timings that minimize intersection delay, based on a linear programming. A micro simulation analysis using CORSIM and RUN TIME EXTENSION verified saturated intersection conditions, and determined the optimal traffic signal timings that minimize intersection delay. In addition, the performance of algorithm varying according to market penetration was examined. In spite of limited results from a specific scenario, this algorithm turned out to be effective as long as the probe rate exceeds 40 percent. Recently, space-based traffic surveillance systems are being installed by various projects, such as Hi-pass, Advanced Transportation Management System (ATMS) and Urban Transportation Information System (UTIS) in Korea. This research has an important significance in that the propose algorithm is a new methodology that accepts the space-based traffic surveillance system in real-time signal operations.

Comparative Analysis of NDWI and Soil Moisture Map Using Sentinel-1 SAR and KOMPSAT-3 Images (KOMPSAT-3와 Sentinel-1 SAR 영상을 적용한 토양 수분도와 NDWI 결과 비교 분석)

  • Lee, Jihyun;Kim, Kwangseob;Lee, Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1935-1943
    • /
    • 2022
  • The development and application of a high-resolution soil moisture mapping method using satellite imagery has been considered one of the major research themes in remote sensing. In this study, soil moisture mapping in the test area of Jeju Island was performed. The soil moisture was calculated with optical images using linearly adjusted Synthetic Aperture Radar (SAR) polarization images and incident angle. SAR Backscatter data, Analysis Ready Data (ARD) provided by Google Earth Engine (GEE), was used. In the soil moisture processing process, the optical image was applied to normalized difference vegetation index (NDVI) by surface reflectance of KOMPSAT-3 satellite images and the land cover map of Environmental Systems Research Institute (ESRI). When the SAR image and the optical images are fused, the reliability of the soil moisture product can be improved. To validate the soil moisture mapping product, a comparative analysis was conducted with normalized difference water index (NDWI) products by the KOMPSAT-3 image and those of the Landsat-8 satellite. As a result, it was shown that the soil moisture map and NDWI of the study area were slightly negative correlated, whereas NDWI using the KOMPSAT-3 images and the Landsat-8 satellite showed a highly correlated trend. Finally, it will be possible to produce precise soil moisture using KOMPSAT optical images and KOMPSAT SAR images without other external remotely sensed images, if the soil moisture calculation algorithm used in this study is further developed for the KOMPSAT-5 image.

An Experiment for Surface Soil Moisture Mapping Using Sentinel-1 and Sentinel-2 Image on Google Earth Engine (Google Earth Engine 제공 Sentinel-1과 Sentinel-2 영상을 이용한 지표 토양수분도 제작 실험)

  • Jihyun Lee ;Kwangseob Kim;Kiwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.599-608
    • /
    • 2023
  • The increasing interest in soil moisture data using satellite data for applications of hydrology, meteorology, and agriculture has led to the development of methods for generating soil moisture maps of variable resolution. This study demonstrated the capability of generating soil moisture maps using Sentinel-1 and Sentinel-2 data provided by Google Earth Engine (GEE). The soil moisture map was derived using synthetic aperture radar (SAR) image and optical image. SAR data provided by the Sentinel-1 analysis ready data in GEE was applied with normalized difference vegetation index (NDVI) based on Sentinel-2 and Environmental Systems Research Institute (ESRI)-based Land Cover map. This study produced a soil moisture map in the research area of Victoria, Australia and compared it with field measurements obtained from a previous study. As for the validation of the applied method's result accuracy, the comparative experimental results showed a meaningful range of consistency as 4-10%p between the values obtained using the algorithm applied in this study and the field-based ones, and they also showed very high consistency with satellite-based soil moisture data as 0.5-2%p. Therefore, public open data provided by GEE and the algorithm applied in this study can be used for high-resolution soil moisture mapping to represent regional land surface characteristics.

A PLS Path Modeling Approach on the Cause-and-Effect Relationships among BSC Critical Success Factors for IT Organizations (PLS 경로모형을 이용한 IT 조직의 BSC 성공요인간의 인과관계 분석)

  • Lee, Jung-Hoon;Shin, Taek-Soo;Lim, Jong-Ho
    • Asia pacific journal of information systems
    • /
    • v.17 no.4
    • /
    • pp.207-228
    • /
    • 2007
  • Measuring Information Technology(IT) organizations' activities have been limited to mainly measure financial indicators for a long time. However, according to the multifarious functions of Information System, a number of researches have been done for the new trends on measurement methodologies that come with financial measurement as well as new measurement methods. Especially, the researches on IT Balanced Scorecard(BSC), concept from BSC measuring IT activities have been done as well in recent years. BSC provides more advantages than only integration of non-financial measures in a performance measurement system. The core of BSC rests on the cause-and-effect relationships between measures to allow prediction of value chain performance measures to allow prediction of value chain performance measures, communication, and realization of the corporate strategy and incentive controlled actions. More recently, BSC proponents have focused on the need to tie measures together into a causal chain of performance, and to test the validity of these hypothesized effects to guide the development of strategy. Kaplan and Norton[2001] argue that one of the primary benefits of the balanced scorecard is its use in gauging the success of strategy. Norreklit[2000] insist that the cause-and-effect chain is central to the balanced scorecard. The cause-and-effect chain is also central to the IT BSC. However, prior researches on relationship between information system and enterprise strategies as well as connection between various IT performance measurement indicators are not so much studied. Ittner et al.[2003] report that 77% of all surveyed companies with an implemented BSC place no or only little interest on soundly modeled cause-and-effect relationships despite of the importance of cause-and-effect chains as an integral part of BSC. This shortcoming can be explained with one theoretical and one practical reason[Blumenberg and Hinz, 2006]. From a theoretical point of view, causalities within the BSC method and their application are only vaguely described by Kaplan and Norton. From a practical consideration, modeling corporate causalities is a complex task due to tedious data acquisition and following reliability maintenance. However, cause-and effect relationships are an essential part of BSCs because they differentiate performance measurement systems like BSCs from simple key performance indicator(KPI) lists. KPI lists present an ad-hoc collection of measures to managers but do not allow for a comprehensive view on corporate performance. Instead, performance measurement system like BSCs tries to model the relationships of the underlying value chain in cause-and-effect relationships. Therefore, to overcome the deficiencies of causal modeling in IT BSC, sound and robust causal modeling approaches are required in theory as well as in practice for offering a solution. The propose of this study is to suggest critical success factors(CSFs) and KPIs for measuring performance for IT organizations and empirically validate the casual relationships between those CSFs. For this purpose, we define four perspectives of BSC for IT organizations according to Van Grembergen's study[2000] as follows. The Future Orientation perspective represents the human and technology resources needed by IT to deliver its services. The Operational Excellence perspective represents the IT processes employed to develop and deliver the applications. The User Orientation perspective represents the user evaluation of IT. The Business Contribution perspective captures the business value of the IT investments. Each of these perspectives has to be translated into corresponding metrics and measures that assess the current situations. This study suggests 12 CSFs for IT BSC based on the previous IT BSC's studies and COBIT 4.1. These CSFs consist of 51 KPIs. We defines the cause-and-effect relationships among BSC CSFs for IT Organizations as follows. The Future Orientation perspective will have positive effects on the Operational Excellence perspective. Then the Operational Excellence perspective will have positive effects on the User Orientation perspective. Finally, the User Orientation perspective will have positive effects on the Business Contribution perspective. This research tests the validity of these hypothesized casual effects and the sub-hypothesized causal relationships. For the purpose, we used the Partial Least Squares approach to Structural Equation Modeling(or PLS Path Modeling) for analyzing multiple IT BSC CSFs. The PLS path modeling has special abilities that make it more appropriate than other techniques, such as multiple regression and LISREL, when analyzing small sample sizes. Recently the use of PLS path modeling has been gaining interests and use among IS researchers in recent years because of its ability to model latent constructs under conditions of nonormality and with small to medium sample sizes(Chin et al., 2003). The empirical results of our study using PLS path modeling show that the casual effects in IT BSC significantly exist partially in our hypotheses.

Mapping Categories of Heterogeneous Sources Using Text Analytics (텍스트 분석을 통한 이종 매체 카테고리 다중 매핑 방법론)

  • Kim, Dasom;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.193-215
    • /
    • 2016
  • In recent years, the proliferation of diverse social networking services has led users to use many mediums simultaneously depending on their individual purpose and taste. Besides, while collecting information about particular themes, they usually employ various mediums such as social networking services, Internet news, and blogs. However, in terms of management, each document circulated through diverse mediums is placed in different categories on the basis of each source's policy and standards, hindering any attempt to conduct research on a specific category across different kinds of sources. For example, documents containing content on "Application for a foreign travel" can be classified into "Information Technology," "Travel," or "Life and Culture" according to the peculiar standard of each source. Likewise, with different viewpoints of definition and levels of specification for each source, similar categories can be named and structured differently in accordance with each source. To overcome these limitations, this study proposes a plan for conducting category mapping between different sources with various mediums while maintaining the existing category system of the medium as it is. Specifically, by re-classifying individual documents from the viewpoint of diverse sources and storing the result of such a classification as extra attributes, this study proposes a logical layer by which users can search for a specific document from multiple heterogeneous sources with different category names as if they belong to the same source. Besides, by collecting 6,000 articles of news from two Internet news portals, experiments were conducted to compare accuracy among sources, supervised learning and semi-supervised learning, and homogeneous and heterogeneous learning data. It is particularly interesting that in some categories, classifying accuracy of semi-supervised learning using heterogeneous learning data proved to be higher than that of supervised learning and semi-supervised learning, which used homogeneous learning data. This study has the following significances. First, it proposes a logical plan for establishing a system to integrate and manage all the heterogeneous mediums in different classifying systems while maintaining the existing physical classifying system as it is. This study's results particularly exhibit very different classifying accuracies in accordance with the heterogeneity of learning data; this is expected to spur further studies for enhancing the performance of the proposed methodology through the analysis of characteristics by category. In addition, with an increasing demand for search, collection, and analysis of documents from diverse mediums, the scope of the Internet search is not restricted to one medium. However, since each medium has a different categorical structure and name, it is actually very difficult to search for a specific category insofar as encompassing heterogeneous mediums. The proposed methodology is also significant for presenting a plan that enquires into all the documents regarding the standards of the relevant sites' categorical classification when the users select the desired site, while maintaining the existing site's characteristics and structure as it is. This study's proposed methodology needs to be further complemented in the following aspects. First, though only an indirect comparison and evaluation was made on the performance of this proposed methodology, future studies would need to conduct more direct tests on its accuracy. That is, after re-classifying documents of the object source on the basis of the categorical system of the existing source, the extent to which the classification was accurate needs to be verified through evaluation by actual users. In addition, the accuracy in classification needs to be increased by making the methodology more sophisticated. Furthermore, an understanding is required that the characteristics of some categories that showed a rather higher classifying accuracy of heterogeneous semi-supervised learning than that of supervised learning might assist in obtaining heterogeneous documents from diverse mediums and seeking plans that enhance the accuracy of document classification through its usage.

Predicting stock movements based on financial news with systematic group identification (시스템적인 군집 확인과 뉴스를 이용한 주가 예측)

  • Seong, NohYoon;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.1-17
    • /
    • 2019
  • Because stock price forecasting is an important issue both academically and practically, research in stock price prediction has been actively conducted. The stock price forecasting research is classified into using structured data and using unstructured data. With structured data such as historical stock price and financial statements, past studies usually used technical analysis approach and fundamental analysis. In the big data era, the amount of information has rapidly increased, and the artificial intelligence methodology that can find meaning by quantifying string information, which is an unstructured data that takes up a large amount of information, has developed rapidly. With these developments, many attempts with unstructured data are being made to predict stock prices through online news by applying text mining to stock price forecasts. The stock price prediction methodology adopted in many papers is to forecast stock prices with the news of the target companies to be forecasted. However, according to previous research, not only news of a target company affects its stock price, but news of companies that are related to the company can also affect the stock price. However, finding a highly relevant company is not easy because of the market-wide impact and random signs. Thus, existing studies have found highly relevant companies based primarily on pre-determined international industry classification standards. However, according to recent research, global industry classification standard has different homogeneity within the sectors, and it leads to a limitation that forecasting stock prices by taking them all together without considering only relevant companies can adversely affect predictive performance. To overcome the limitation, we first used random matrix theory with text mining for stock prediction. Wherever the dimension of data is large, the classical limit theorems are no longer suitable, because the statistical efficiency will be reduced. Therefore, a simple correlation analysis in the financial market does not mean the true correlation. To solve the issue, we adopt random matrix theory, which is mainly used in econophysics, to remove market-wide effects and random signals and find a true correlation between companies. With the true correlation, we perform cluster analysis to find relevant companies. Also, based on the clustering analysis, we used multiple kernel learning algorithm, which is an ensemble of support vector machine to incorporate the effects of the target firm and its relevant firms simultaneously. Each kernel was assigned to predict stock prices with features of financial news of the target firm and its relevant firms. The results of this study are as follows. The results of this paper are as follows. (1) Following the existing research flow, we confirmed that it is an effective way to forecast stock prices using news from relevant companies. (2) When looking for a relevant company, looking for it in the wrong way can lower AI prediction performance. (3) The proposed approach with random matrix theory shows better performance than previous studies if cluster analysis is performed based on the true correlation by removing market-wide effects and random signals. The contribution of this study is as follows. First, this study shows that random matrix theory, which is used mainly in economic physics, can be combined with artificial intelligence to produce good methodologies. This suggests that it is important not only to develop AI algorithms but also to adopt physics theory. This extends the existing research that presented the methodology by integrating artificial intelligence with complex system theory through transfer entropy. Second, this study stressed that finding the right companies in the stock market is an important issue. This suggests that it is not only important to study artificial intelligence algorithms, but how to theoretically adjust the input values. Third, we confirmed that firms classified as Global Industrial Classification Standard (GICS) might have low relevance and suggested it is necessary to theoretically define the relevance rather than simply finding it in the GICS.