• Title/Summary/Keyword: Rescheduling cost

Search Result 17, Processing Time 0.028 seconds

Generation Rescheduling Based on Energy Margin Sensitivity for Transient Stability Enhancement

  • Kim, Kyu-Ho;Rhee, Sang-Bong;Hwang, Kab-Ju;Song, Kyung-Bin;Lee, Kwang Y.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.20-28
    • /
    • 2016
  • This paper presents a generation rescheduling method for the enhancement of transient stability in power systems. The priority and the candidate generators for rescheduling are calculated by using the energy margin sensitivity. The generation rescheduling formulates the Lagrangian function with the fuel cost and emission such as NOx and SOx from power plants. The generation rescheduling searches for the solution that minimizes the Lagrangian function by using the Newton’s approach. While the Pareto optimum in the fuel cost and emission minimization has a drawback of finding a number of non-dominated solutions, the proposed approach can explore the non-inferior solutions of the multiobjective optimization problem more efficiently. The method proposed is applied to a 4-machine 6-bus system to demonstrate its effectiveness.

A CP-BASED OPTIMIZATION MODEL FOR CONSTRUCTION RESCHEDULING PROBLEMS

  • Shu-Shun Liu;Kuo-Chuan Shih
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.941-946
    • /
    • 2005
  • It is essential for project managers to make schedule adjustment based on their professional experience, in terms of rescheduling action discussed in this paper. This paper discusses the topics of resource-constrained construction rescheduling by modifying the concepts of manufacturing rescheduling. Moreover, the influence factors of construction rescheduling problems are investigated and identified in this paper. According to initial schedule plan and present progress, a new rescheduling mechanism based on Constraint Programming (CP) techniques is developed to reschedule projects with the objective of minimizing total project cost or duration, under three rescheduling policies. Through case study, the behavior of three different rescheduling policies is analyzed and discussed in this paper.

  • PDF

Comparative Study of Two Congestion Management Methods for the Restructured Power Systems

  • Manikandan, B.V.;Raja, S. Charles;Venkatesh, P.;Mandala, Manasarani
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.302-310
    • /
    • 2011
  • Congestion management is one of the most challenging tasks of a system operator to ensure the operation of transmission system within operating limits. In this paper, cluster/zone method and relative electrical distance (RED) method for congestion management are compared based on the considered parameters. In the cluster/zone method, rescheduling of generation is based on user impact on congestion through the use of transmission congestion distribution factors. In the RED method, the desired proportions of generations for the desired overload relieving are obtained. Even after generation rescheduling, if congestion exists, load curtailment option is also introduced. Rescheduling cost, system cost, losses, and voltage stability parameter are also calculated and compared for the above two methods of congestion management. The results are illustrated on sample 6-bus, IEEE 30-bus, and Indian utility 69-bus systems.

A Study on the Rescheduling of Generation Considering Contingency in Power System with Wind Farms (풍력발전단지가 연계된 전력계통에서 상정고장을 고려한 발전력 재조정에 관한 연구)

  • Choi, Soo-Hyun;Kim, Kyu-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.255-260
    • /
    • 2017
  • This paper studies on effective rescheduling of generation when the single line contingency has occurred in power system with wind farm. The suggested method is formulated to minimize the rescheduling cost of conventional and wind generators to alleviate congestion. The generator rescheduling method has been used with incorporation of wind farms in the power system. Since all sensitivity is different about congestion line, Line Outage Distribution Factor(LODF) and Generator Sensitivity Factor(GSF) is used to alleviate congestion. The formulation have been proccessed using linear programming(LP) optimization techniques to alleviate transmission congestion. The effectiveness of the proposed rescheduling of generation method has been analyzed on revised IEEE 30-bus systems.

Optimal Congestion Management Based on Sensitivity in Power System with Wind Farms (민감도를 이용하여 풍력단지가 연계된 송전계통의 최적혼잡처리)

  • Choi, Soo-Hyun;Kim, Kyu-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.1965-1970
    • /
    • 2016
  • This paper studies generator rescheduling technique for congestion management in power system with wind farms. The proposed technique is formulated to minimize the rescheduling cost of conventional and wind generators to alleviate congestion subject to operational line overloading. The generator rescheduling method has been used with incorporation of wind farms in the power system. The locations of wind farms are selected based upon power transfer distribution factor (PTDF). Because all generators in the system do not need to participate in congestion management, the rescheduling has been done by generator selection based on the proposed generator sensitivity factor (GSF). The selected generators have been rescheduled using linear programming(LP) optimization techniques to alleviate transmission congestion. The effectiveness of the proposed methodology has been analyzed on IEEE 14-bus systems.

An Optimal Scheduling Method based upon the Lower Bound Cost Estimation (하한비용 추정에 바탕을 둔 최적 스케쥴링기법)

  • 엄성용;전주식
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.12
    • /
    • pp.73-87
    • /
    • 1991
  • This paper presents a new approach to the scheduling problem in the high level synthesis. In this approach, iterative rescheduling processes starting with ASAP(As Soon As Possible) scheduling result are performed in a branch-and-bound manner so to arrive at the scheduling result of the lowest hardware cost under the given timing constraint. At each iteration step, only the selected nodes are considered for rescheduling, and the lower bound cost estimation is performed to avoid the unnecessary attempts to search for an optimal result. This branch-and-bound method turns out to be effective in pruning the search space, and thus reducing run time considerably in many cases.

  • PDF

Generation Rescheduling Considering Generation Fuel Cost and CO2 Emission Cost (발전연료비용과 탄소배출비용을 고려한 발전력 재배분)

  • Kim, Kyu-Ho;Rhee, Sang-Bong;Song, Kyung-Bin;Hwang, Kab-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.591-595
    • /
    • 2013
  • This paper presents a method of generation rescheduling using Newton's Approach which searches the solution of the Lagrangian function. The generation fuel cost and $CO_2$ emission cost functions are used as objective function to reallocate power generation while satisfying several equality and inequality constraints. The Pareto optimum in the fuel cost and emission objectives has a number of non-dominated solutions. The economic effects are analyzed under several different conditions, and $CO_2$ emission reductions offered by the use of storage are considered. The proposed approach can explore more efficient and noninferior solutions of a Multiobjective optimization problem. The method proposed is applied to a 4-machine 6-buses system to demonstrate its effectiveness.

Application of Newton's Approach for Transient Stability Improvement by Using Generation Rescheduling (발전력 재배분을 이용하여 과도안정도를 향상하기 위한 Newton's Approach 응용)

  • Kim, Kyu-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.1
    • /
    • pp.68-75
    • /
    • 2013
  • This paper presents a scheme to improve transient stability using Newton's Approach for generation rescheduling. For a given contingency, the energy margin and sensitivities are computed. The bigger energy margin sensitivity of generator is, the more the generation of the generator effects to the transient stability. According to energy margin sensitivity, the control variables of generation rescheduling are selected. The fuel cost function is used as objective function to reallocate power generation. The results are compared to the results of time simulation to show its the effectiveness.

A Simulation Analysis on the Validity of Color Rescheduling Storage in an Automobile Painting Shop (자동차 도장공장의 Color Rescheduling Storage 설치를 위한 시뮬레이션 분석)

  • Moon, Dug-Hee;Kim, Ha-Seok;Song, Cheng;Kim, Kyung-Wan
    • IE interfaces
    • /
    • v.16 no.2
    • /
    • pp.211-221
    • /
    • 2003
  • This paper introduces a simulation study regarding the design for the installation of Color Rescheduling Storage (CRS) in an automobile factory. In the painting shop the colors of vehicles are changed frequently according to the assembly schedule. When the color of a vehicle is changed from one to another, the cleaning process of painting-gun is necessary and it generates costs. Therefore many of the automobile manufacturers equip the CRS in front of the Top Coat Booth of the painting shop. The major objective of CRS is to reduce the change over cost in the painting process by grouping vehicles having same color. In this paper the configuration of CRS and the input/output algorithms are explained. The suggested system is verified using simulation models and experiments are conducted. Finally the best alternative is suggested by sensitivity analysis and evaluation of investment feasibility.

Special Protection and Control Scheme for Transmission Line Overloading Elimination Based on Hybrid Differential Evolution/Electromagnetism-Like Algorithm

  • Hadi, Mahmood Khalid;Othman, Mohammad Lutfi;Wahab, Noor Izzri Abd
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1729-1742
    • /
    • 2017
  • In designing System Protection Schemes (SPSs) in power systems, protecting transmission network against extreme undesired conditions becomes a significant challenge in mitigating the transmission line overloading. This paper presents an intelligent Special Protection and Control Scheme (SPCS) using of Differential Evolution with Adaptive Mutation (DEAM) approach to obtain the optimum generation rescheduling to solve the transmission line overloading problem in system contingency conditions. DEAM algorithm employs the attraction-repulsion idea that is applied in the electromagnetism-like algorithm to support the mutation process of the conventional Differential Evolution (DE) algorithm. Different N-1 contingency conditions under base and increase load demand are considered in this paper. Simulation results have been compared with those acquired from Genetic Algorithm (GA) application. Minimum severity index has been considered as the objective function. The final results show that the presented DEAM method offers better performance than GA in terms of faster convergence and less generation fuel cost. IEEE 30-bus test system has been used to prove the effectiveness and robustness of the proposed algorithm.