이 논문은 BM25 랭킹 알고리즘에 ResNet-Transformer 모델을 사용하여, 웹사이트의 게시글과 상품평 리뷰에 대한 검색 기능을 개선하는 방법을 제안한다. BM25는 사용자 질의와 문서 간의 관련성을 평가하여 순위화(ranking)하는 알고리즘으로 텍스트 기반 검색에서 광범위하게 사용되고 있다. 하지만 단어의 국소적인 특징 추출과 문장의 맥락을 파악하지 못하는 단점이 있다. 이에 본 논문에서는 국소적인 특징을 잘 추출하는 ResNet 모델과 문맥을 잘 파악하는 트랜스포머 모델을 결합한 분류 방법을 BM25의 가중치로 적용하여, 검색 기능을 향상시켰다. 테스트 결과 본 논문에서 제시하는 방법이 BM25 대비 nDCG 평가지표는 9.38%, aP@5 평가지표는 11.82% 향상됨을 확인하였다. 이를 통해 논문에서 제시한 방법을 여러 웹사이트의 검색창에 적용하면, 게시글과 상품평 리뷰 검색시에 정확한 결과를 제공해 줄 것으로 기대된다.
온라인 거래가 증가하면서 의류 이미지는 소비자의 구매 결정에 큰 영향을 미치게 되었다. 의류 소재에 대한 이미지 정보의 중요성이 강조되고 있으며, 의류 이미지를 분석하여 사용된 소재를 파악하는 것은 패션 산업에 있어서 중요하다. 의류에 사용된 텍스타일의 소재는 육안으로 식별하기 어렵고, 분류 작업에도 많은 시간과 비용이 소모된다. 본 연구는 딥러닝 알고리즘을 기반으로 의류 이미지로부터 텍스타일의 소재를 분류하고자 하였다. 소재를 분류함으로써 의류 생산 비용을 절감하고, 제조공정의 효율성을 증대하는데 도움이 되며 소비자에게 특정 소재의 제품을 추천하는 AI 서비스에 기여할 수 있다. 의류 이미지를 분류하기 위해 머신비전 기반의 딥러닝 알고리즘 ResNet과 Vision Transformer를 이용하였다. 760,949장의 이미지를 수집하였고, 비정상 이미지를 검출하는 전처리 과정을 거쳤다. 최종적으로 총 167,299장의 의류 이미지와 섬유라벨 19개, 직물라벨 20개를 사용하였다. ResNet과 Vision Transformer를 사용해서 의류 텍스타일의 소재를 분류하였으며 알고리즘 성능을 Top-k Accuracy Score 지표를 통해 비교하였다. 성능을 비교한 결과, ResNet 보다 Vision Transformer 알고리즘이 더 우수하였다.
Unlike optical equipment, SAR(Synthetic Aperture Radar) has the advantage of obtaining images in all weather, and object detection in SAR images is an important issue. Generally, deep learning-based object detection was mainly performed in real-valued network using only amplitude of SAR image. Since the SAR image is complex data consist of amplitude and phase data, a complex-valued network is required. In this paper, a complex-valued ResNet network is proposed. SAR image object detection was performed by combining the ROI transformer detector specialized for aerial image detection and the proposed complex-valued ResNet. It was confirmed that higher accuracy was obtained in complex-valued network than in existing real-valued network.
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권8호
/
pp.2103-2118
/
2024
Chinese herbal slices (CHS) automated recognition based on computer vision plays a critical role in the practical application of intelligent Chinese medicine. Due to the complexity and similarity of herbal images, identifying Chinese herbal slices is still a challenging task. Especially, easily-confused CHS have higher inter-class and intra-class complexity and similarity issues, the existing deep learning models are less adaptable to identify them efficiently. To comprehensively address these problems, a novel tiny easily-confused CHS dataset has been built firstly, which includes six pairs of twelve categories with about 2395 samples. Furthermore, we propose a ResNeSt-CHS model that combines multilevel perception fusion (MPF) and perceptive sparse fusion (PSF) blocks for efficiently recognizing easilyconfused CHS images. To verify the superiority of the ResNeSt-CHS and the effectiveness of our dataset, experiments have been employed, validating that the ResNeSt-CHS is optimal for easily-confused CHS recognition, with 2.1% improvement of the original ResNeSt model. Additionally, the results indicate that ResNeSt-CHS is applied on a relatively small-scale dataset yet high accuracy. This model has obtained state-of-the-art easily-confused CHS classification performance, with accuracy of 90.8%, far beyond other models (EfficientNet, Transformer, and ResNeSt, etc) in terms of evaluation criteria.
This paper presents a comparative study of five deep learning models-ResNet50, DenseNet121, Vision Transformer (ViT), Swin Transformer (SwinT), and CoatNet-on the task of multi-label classification of fundus images for ocular diseases. The models were trained on the Ocular Disease Recognition (ODIR) dataset and validated on the Retinal Fundus Multi-disease Image Dataset (RFMiD), with a focus on five disease classes: diabetic retinopathy, glaucoma, cataract, age-related macular degeneration, and myopia. The performance was evaluated using the area under the receiver operating characteristic curve (AUC-ROC) score for each class. CoatNet achieved the best AUC-ROC scores for diabetic retinopathy, glaucoma, cataract, and myopia, while ViT outperformed CoatNet for age-related macular degeneration. Overall, CoatNet exhibited the highest average performance across all classes, highlighting the effectiveness of hybrid architectures in medical image classification. These findings suggest that CoatNet may be a promising model for multi-label classification of fundus images in cross-dataset scenarios.
Convolutional neural network(CNN), recurrent neural network(RNN)와 같은 다양한 인공 신경망이 연구되고 있으며, 타 인공지능 기반 모델의 기초 구조로 활용되고 있다. 그 중, 트랜스포머를 기반으로 하는 인공 신경망은 자연어 처리 분야에서 그 성능이 입증되었고, 활발하게 연구되고 있는 구조이다. 최근 트랜스포머 기반 인공 신경망의 내부구조 변경을 통해 영상처리가 가능한 Vision transformer(ViT) 모델이 개발되었다. 비젼 영상처리에 있어 ViT 모델의 정확도와 성능은 다양한 연구를 통해 입증되었다. 본 연구에서는 흉부 X-선 영상을 이용하여 폐렴을 진단할 수 있는 ViT 기반 모델을 개발하고, 개발 모델의 학습효율 및 성능을 정량적으로 평가하였다. ViT 기반 모델의 구조는 encoder block의 개수를 다르게 하여 설계하였고, 신경망 학습 시 패치의 크기를 다르게 설정하였다. 또한 개발한 ViT 기반 모델을 검증하기 위하여 기존 CNN 기반 모델인 VGGNet, GoogLeNet 및 ResNet 모델과 성능 비교를 수행하였다. 연구결과 ViT 기반 모델의 학습효율 및 성능은 encoder block의 개수 및 학습 패치 크기에 따라 변화함을 확인하였고 F1 score가 최소 0.875, 최대 0.919로 측정되었다. 32 × 32 크기의 패치를 이용하여 학습한 ViT 기반 모델의 학습효율은 기존 CNN 기반 모델에 비해 우수한 것으로 확인되었으며, 본 연구에서 설계한 모든 ViT 기반 모델이 VGGNet 보다 폐렴 진단의 정확도가 높은 결과를 확인하였다. 결론적으로 본 연구에서 개발한 ViT 기반 모델은 흉부 X-선 영상을 이용한 폐렴 진단에 잠재적으로 사용될 수 있으며, 본 연구를 통해 ViT 기반 모델의 임상적 활용가능성을 향상시킬 수 있을 것이다.
Accurate seismic vulnerability assessment requires high quality and large amounts of ground motion data. Ground motion data generated from time series contains not only the seismic waves but also the background noise. Therefore, it is crucial to determine the high-pass cut-off frequency to reduce the background noise. Traditional methods for determining the high-pass filter frequency are based on human inspection, such as comparing the noise and the signal Fourier Amplitude Spectrum (FAS), f2 trend line fitting, and inspection of the displacement curve after filtering. However, these methods are subject to human error and unsuitable for automating the process. This study used a deep learning approach to determine the high-pass filter frequency. We used the Mel-spectrogram for feature extraction and mixup technique to overcome the lack of data. We selected convolutional neural network (CNN) models such as ResNet, DenseNet, and EfficientNet for transfer learning. Additionally, we chose ViT and DeiT for transformer-based models. The results showed that ResNet had the highest performance with R2 (the coefficient of determination) at 0.977 and the lowest mean absolute error (MAE) and RMSE (root mean square error) at 0.006 and 0.074, respectively. When applied to a seismic event and compared to the traditional methods, the determination of the high-pass filter frequency through the deep learning method showed a difference of 0.1 Hz, which demonstrates that it can be used as a replacement for traditional methods. We anticipate that this study will pave the way for automating ground motion processing, which could be applied to the system to handle large amounts of data efficiently.
본 논문에서는 이종 모델의 특징맵 간 상관관계인 외부적 상관관계와 동종 모델 내부 특징맵 간 상관관계인 내부적 상관관계를 활용하여 교사 모델로부터 학생 모델로 지식을 전이하는 Internal/External Knowledge Distillation (IEKD)를 제안한다. 두 상관관계를 모두 활용하기 위하여 특징맵을 시퀀스 형태로 변환하고, 트랜스포머를 통해 내부적/외부적 상관관계를 고려하여 지식 증류에 적합한 새로운 특징맵을 추출한다. 추출된 특징맵을 증류함으로써 내부적 상관관계와 외부적 상관관계를 함께 학습할 수 있다. 또한 추출된 특징맵을 활용하여 feature matching을 수행함으로써 학생 모델의 정확도 향상을 도모한다. 제안한 지식 증류 방법의 효과를 증명하기 위해, CIFAR-100 데이터 셋에서 "ResNet-32×4/VGG-8" 교사/학생 모델 조합으로 최신 지식 증류 방법보다 향상된 76.23% Top-1 이미지 분류 정확도를 달성하였다.
최근 농가의 사과 품질 선별 작업에서 인적자원의 한계를 극복하기 위해 합성곱 신경망(CNN) 기반 시스템이 개발되고 있다. 그러나 합성곱 신경망은 동일한 크기의 이미지만을 입력받기 때문에 샘플링 등의 전처리 과정이 요구될 수 있으며, 과도 샘플링의 경우 화질 저하, 블러링 등 원본 이미지의 정보손실 문제가 발생한다. 본 논문에서는 위 문제를 최소화하기 위하여, 원본 이미지의 패치 기반 그래프를 생성하고 그래프 트랜스포머 모델의 랜덤워크 기반 위치 인코딩 방법을 제안한다. 위 방법은 랜덤워크 알고리즘 기반 위치정보가 없는 패치들의 위치 임베딩 정보를 지속적으로 학습하고, 기존 그래프 트랜스포머의 자가 주의집중 기법을 통해 유익한 노드정보들을 집계함으로써 최적의 그래프 구조를 찾는다. 따라서 무작위 노드 순서의 새로운 그래프 구조와 이미지의 객체 위치에 따른 임의의 그래프 구조에서도 강건한 성질을 가지며, 좋은 성능을 보여준다. 5가지 사과 품질 데이터셋으로 실험하였을 때, 다른 GNN 모델보다 최소 1.3%에서 최대 4.7%의 학습 정확도가 높았으며, ResNet18 모델의 23.52M보다 약 15% 적은 3.59M의 파라미터 수를 보유하여 연산량 절감에 따른 빠른 추론 속도를 보이며 그 효과를 증명한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.