• Title/Summary/Keyword: Repulsive power

Search Result 22, Processing Time 0.022 seconds

MODELING OF A REPULSIVE TYPE MAGNETIC BEARING FOR FIVE AXIS CONTROL INCLUDING EDDY CURRENT EFFECT

  • Ohji, T.;Mukhopadhyay, S.C.;Iwahara, M.;Yamada, S.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.625-629
    • /
    • 1998
  • So far a single-axis controlled repulsive type magnetic bearing system have been designed and fabricated in our laboratory employing the repulsive forces operating between the stator and rotor permanent magnet for levitation. The radial axis is uncontrolled passive one. The higher speed of operation is limited due to the vibration along the uncontrolled axis and the increase of control current due to eddy current interference. This paper will discuss a detailed modeling of the repulsive type magnetic bearing system for five axis control including the eddy current effect and the method of reduction of eddy current effect. Simulation results using Matlab will be presented.

  • PDF

Design of a Troidal Type Gyro using Repulsive Power of Permanent Magnet and Coriolis Effect (영구자석의 반발력과 코리올리 효과를 이용한 트로이덜 형 자이로의 설계)

  • Shin, Hye-Ung;Jou, Sung Tak;Lee, Kyo-Beum;Han, Man Yop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.694-700
    • /
    • 2015
  • This paper deals with the design of 1-kW troidal type gyro. In general, gyro can be used as magnet bearing or flywheel energy storage device. The proposed troidal type gyro is used as a flywheel energy storage device. The gyro is capable of high-speed rotation in the air. The coriolis effect is taken into account when designing the rotor of the proposed gyro. Also the repulsive power of the permanent magnet is considered while selecting the shape and the thickness of the magnet. The neodymium is used as material of the magnets in this paper. The number of magnets are selected accordingly to reduce these torque ripples because torque ripples is an important factor while designing the gyro. The designed troidal type gyro is verified through the Finite Element Method (FEM).

Levitation Control Experiment at Standstill in PM LSM Controlled-Repulsive Maglev Vehicle

  • Yoshida, Kinjiro;Takami, Hiroshi;Jozaki, Chiyuki;Kinoshita, Shiauo
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.119-124
    • /
    • 1998
  • This paper proposes a new repulsive-Maglev vehicle in which a vertical type PM linear synchronous motor (LSM) can levitate and propel simultaneously, independently of the vehicle speeds. A compact control method is developed which is based on the concept of controlling individually the levitation system by armature-current and the propulsion system by mechanical load-angle. The levitation-motion control experiments have carried out successfully together with positioning at standstill. The pitching motion has been compensated for very well by using the zero-phase-current control method proposed here.

  • PDF

Repulsive force analysis of a new maglev scheme with an AC superconducting magnet (교류용 초전도자석을 이용한 새로운 자기부상시스템의 반발력 해석)

  • 김동훈;이지황;차귀수;한송엽
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.1
    • /
    • pp.18-23
    • /
    • 1996
  • This paper proposes a new levitation scheme for EDS MAGLEV vehicle with AC superconducting magnet(ACSCM). The eddy current and the levitation force are generated at all speed including stand still in this scheme, therefore, the auxiliary wheels on DCSCM can be eliminated. To reduce the ac loss of the magnet, the ACSCM also can be operated as a DCASCM at high speed because levitation force generated by DCSCM is enough at high speed. To prove the effectiveness of the proposed scheme, the repulsive force and power loss versus frequency of ACSCM is calculated. For comparison, characteristics of DCSCM of same cross section versus speed are also given. (author). 6 refs., 9 figs.

  • PDF

Design of a Height Adjustable Bunker Bed Using a Gas Spring (가스 스프링을 이용한 높이조절 벙커침대 설계)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • v.18 no.4
    • /
    • pp.19-27
    • /
    • 2021
  • A bunker bed is a type of furniture that efficiently utilizes a narrow indoor space by having a high bed and using the empty space below as a living and storage space. The demand for multi-purpose furniture is increasing due to the recent increase in single-person households and wide-spread shared accommodation. According to the consumer research, one of the major drawbacks of a bunker bed was to get on and off the bed through a ladder or stairs. In order to overcome these problems, it was confirmed that the height adjustment function that can easily adjust the minimum and maximum heights of the bed was necessary. In this study, a height adjustable bunker bed was designed by using a gas spring that generates a repulsive force by the compressed gas inside. The design process consisted of the following three steps: Firstly, the hysteresis characteristics due to a friction and spring constant of a commercial gas spring were confirmed by measuring the repulsive force vs. compressed displacement. Secondly, requirements of the vertical lifting force exerted on the bed against gravity force were derived. Finally, the height-adjustable bed using the four-bar link mechanism was designed with 4 parameters so that the bed weight of 60-70 kgf could be adjusted to 800 mm in height by an affordable initial operation force. The performance was verified through prototype production and the results of vertical displacement and force to move were nearly the same as designed. In addition, an electrically operated height-adjustable bed was also designed with linear actuators and the performance was proved with the prototype.

Obstacle Avoidance using Power Potential Field for Stereo Vision based Mobile Robot (PPF를 이용한 4족 로봇의 장애물 회피)

  • 조경수;김동진;기창두
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.554-557
    • /
    • 2002
  • This paper describes power potential field method for the collision-free path planning of stereo-vision based mobile robot. Area based stereo matching is performed for obstacle detection in uncertain environment. The repulsive potential is constructed by distributing source points discretely and evenly on the boundaries of obstacles and superposing the power potential which is defined so that the source potential will have more influence on the robot than the sink potential when the robot is near to source point. The mobile robot approaches the goal point by moving the robot directly in negative gradient direction of the main potential. We have investigated the possibility of power potential method for the collision-free path planning of mobile robot through various experiments.

  • PDF

A Graph Layout Algorithm for Scale-free Network (척도 없는 네트워크를 위한 그래프 레이아웃 알고리즘)

  • Cho, Yong-Man;Kang, Tae-Won
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.5_6
    • /
    • pp.202-213
    • /
    • 2007
  • A network is an important model widely used in natural and social science as well as engineering. To analyze these networks easily it is necessary that we should layout the features of networks visually. These Graph-Layout researches have been performed recently according to the development of the computer technology. Among them, the Scale-free Network that stands out in these days is widely used in analyzing and understanding the complicated situations in various fields. The Scale-free Network is featured in two points. The first, the number of link(Degree) shows the Power-function distribution. The second, the network has the hub that has multiple links. Consequently, it is important for us to represent the hub visually in Scale-free Network but the existing Graph-layout algorithms only represent clusters for the present. Therefor in this thesis we suggest Graph-layout algorithm that effectively presents the Scale-free network. The Hubity(hub+ity) repulsive force between hubs in suggested algorithm in this thesis is in inverse proportion to the distance, and if the degree of hubs increases in a times the Hubity repulsive force between hubs is ${\alpha}^{\gamma}$ times (${\gamma}$??is a connection line index). Also, if the algorithm has the counter that controls the force in proportion to the total node number and the total link number, The Hubity repulsive force is independent of the scale of a network. The proposed algorithm is compared with Graph-layout algorithm through an experiment. The experimental process is as follows: First of all, make out the hub that exists in the network or not. Check out the connection line index to recognize the existence of hub, and then if the value of connection line index is between 2 and 3, then conclude the Scale-free network that has a hub. And then use the suggested algorithm. In result, We validated that the proposed Graph-layout algorithm showed the Scale-free network more effectively than the existing cluster-centered algorithms[Noack, etc.].

Dynamic Characteristics of Eddy Current Damper (와전류 댐퍼의 동적특성)

  • Kwag, Dong-Gi;Hwang, Jai-Hyuk;Bae, Jae-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.947-951
    • /
    • 2007
  • This paper is concerned with a new concept for the damper without neither a coil spring nor fluid. The new damper concept consists of the permanent magnets and the cylinder of the conducting material. The opposite pole magnets produces the repulsive forces and this is substituted for the coil spring. The relative motion between the magnets and conducting cylinder produces eddy currents thus resulting in the electromagnetic force, which turns out to be the damping force thus and is substituted for a damping fluid. This damper is called the eddy current damper(ECD). The important advantage of the proposed ECD is that it does not require the damping fluid and any external power and is non-contacting and relatively insensitive to temperature. In the present study, the proposed ECD was constructed and experiments were performed to investigate its dynamic characteristics. The experiments shows that the proposed ECD has the excellent damping ability.

  • PDF

Stability of hydrophobic properties of plasma polymerized tetrakis(trimethylsilyloxy)silane film surface

  • Jang, Jinsub;Woo, Sungmin;Ban, Wonjin;Nam, Jaehyun;Lee, Yeji;Choi, Woo Seok;Jung, Donggeun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.147.1-147.1
    • /
    • 2016
  • Hydrophobic thin films are variously applicable for encapsulation of organic devices and water repulsive glass, etc. In this work, the stability of hydrophobic characteristics of plasma polymerized tetrakis (trimethylsilyloxy) silane (ppTTMSS) thin films were investigated. The films were deposited with plasma enhanced chemical vapor deposition (PECVD) on the glass. The deposition plasma power and deposition pressure was 70 W and 600 mTorr, respectively. Thereafter, deposited films were treated by 248nm KrF excimer laser. Stability of hydrophobic properties of plasma polymerized tetrakis(trimethylsilyloxy)silane film surface was tested by excimer laser irradiation, which is thought to simulate severe outdoor conditions. Excimer laser irradiation cycles changed from 10 to 200 cycles. The chemical structure and hydrophobicity of ppTTMSS films were analyzed by using Fourier transform infrared (FTIR) spectroscopy and water contact angle (WCA) measurement, respectively. Absorption spectra peaks and WCA of excimer laser treated ppTTMSS films did not change notably. These results show that our ppTTMSS films possess stable hydrophobic properties.

  • PDF

Miniature planar stack using the flexible Printed Circuit Board as current collectors (연성 기판을 전류 집전체로 사용한 평판형 연료전지 스택)

  • Kim, Sung-Han;Cha, Hye-Yeon;Miesse, Craig M.;Cha, Suk-Won;Jang, Jae-Hyuk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.1-4
    • /
    • 2008
  • Fuel cells have the potential of providing several times higher energy storage densities than those possible using current state-of-the-art lithium-ion batteries, but current energy density of fuel cell system is not better than that of lithium-ion batteries. To achieve the high energy density, volume and weight of fuel cell system need to be reduced by miniaturizing system components such as stack, fuel tank, and balance-of-plant. In this paper, the thin flexible PCB (Printed circuit board) is used as a current collector to reduce the stack volume. Two end plates are made from light weight aluminum alloy plate. The plate surface is wholly oxidized through the anodizing treatment for electrical insulation. The opening rate of cathode plate hole is optimized through unit cell performance measurement of various opening rates. The performances are measured at room temperature and ambient pressure condition without any repulsive air supply. The active area of MEA is 10.08 $cm^2$ and active area per a unit cell is 1.68 $cm^2$. The peak power density is about 210 mW/$cm^2$ and the air-breathing planar stack of 2 Wis achieved as a small volume of 18 cc.

  • PDF