• Title/Summary/Keyword: Reproductive organ weight

Search Result 77, Processing Time 0.027 seconds

Toxicities Demonstrated in Dams and Neonates following Intragastric Intubation of Polyethylene Microplastics to Pregnant Mice (폴리에틸렌 미세플라스틱의 임신 마우스 위내투여에 따른 모체 및 신생자 독성평가)

  • Song, YoungMin;Kim, ChangYul
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.5
    • /
    • pp.446-453
    • /
    • 2021
  • Background: Plastic particles less than 5 mm in diameter (microplastics) are well-known for causing various toxicities such as lung inflammation, oxidative stress, genotoxicity, and reproductive toxicity. As microplastics become smaller, they can move across cell membranes, the placenta, and the blood-brain barrier. Objectives: We evaluated the toxicities of polyethylene microplastics (PE-PMs) in dams and neonates through intragastric intubation of pregnant ICR mice. Methods: Low concentrations (0.01 mg/mouse/day) and high concentrations (0.1 mg/mouse/day) of polyethylene microplastics were administered from the ninth day of pregnancy to postnatal day seven. The control group was administered with distilled water. On the day of sacrifice, the weight of dams and neonates and the organ weight of neonates was measured. Further, acetylcholinesterase levels and glutathione peroxidase levels were evaluated by using a blood sample obtained on the sacrifice day. Results: No significant difference in the number of neonates was found, but the body weight gain of dams was seen to be lower in the low-dose group. On the other hand, we observed a consecutively declining trend in the weight gain and organ weight of neonates among the high-, control, and low-dose groups. Meanwhile, the serum acetylcholinesterase and glutathione peroxidase level were higher in the low-dose group compared to the control group. Further, the dose-dependent accumulation of microplastics in the organs of neonates revealed the transport of plastic particles from dams to their offspring. Conclusions: Although the exact mechanism of toxicity caused by microplastics could not be confirmed, it was validated that exposure to microplastics during pregnancy and lactation causes its migration between generations and accumulation throughout the body. Hence, it is necessary to evaluate the systemic toxicity of microplastics and assessment of co-morbidities such as second-generation toxicity, neurotoxicity, and depression following long-term exposure.

Changes of plasma melatonin level and testis weight in the seasonal light-period

  • Han, Sang-Zin
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.05a
    • /
    • pp.160-160
    • /
    • 2003
  • Plasma melatonin in the seasonal light-period is circadian rhythmically secreted. Maximal secretion showed at 14 o'clock in summer- and winter-like period, but minimal secretion showed at 5 o'clock in summer-like period and at 8 in winter-like period. These times of minimal secretions were at the beginning of light period. Plasma melatonin in the light period is secreted 62.5% more than in the dark period in summer-like period and 45.9% more in winter-like period. Total plasma melatonin in winter-like period is secreted 56.5% more than in summer-like period. The weights of testis(-20.8%) and body(-7.1%) were reduced in the winter-like period. By the increase of plasma melatonin in mice, body- and testis-weights are decreased, on the contrary by the decrease of plasma melatonin in mice, body and testis weights are increased. In view of the results so far achieved melatonin changes on the body weight and reproductive organ in mice. It is presumed that melatonin effects on the metabolism and sex hormone.

  • PDF

Changes of Plasma Melatonin Level and Testis Weight in Mice in the Seasonal Light-period (인위적인 계절적 광주기에서 쥐에 나타나는 멜라토닌 분비양상과 정소크기변화 조사)

  • 한상진
    • Environmental Analysis Health and Toxicology
    • /
    • v.18 no.1
    • /
    • pp.57-61
    • /
    • 2003
  • Plasma melatonin in the seasonal light-period is circadian rhythmically secreted. Maximal secretion showed at 14 o'clock in summer- and winter-like period, but minimal secretion showed at 5 o'clock in summer-like period and at 8 in winter-like period. These times of minimal secretions were at the beginning of light period. Plasma melatonin in the light period is secreted 62.5% more than in the dark period in summer- like period and 45.9% more in winter- like period. Total plasma melatonin in winter-like period is secreted 56.5% more than in summer-like period. The weights of testis (-20.8%) and body (-7.1%) were reduced in the winter-like period. By the increase of plasma melatonin in mice, body - and testis -weights are decreased, on the contrary by the decrease of plasma melatonin in mice, body and testis weights are increased. In view of the results so far achieved melatonin changes on the body weight and reproductive organ in mice. It is presumed that melatonin effects on the metabolism and sex hormone.

Reproductive and Developmental Toxicity of Amitraz in Sprague-Dawley Rats

  • Lim, Jeong-Hyeon;Kim, Sung-Hwan;Kim, Kang-Hyeon;Park, Na-Hyeong;Shin, In-Sik;Moon, Chang-Jong;Park, Soo-Hyun;Kim, Sung-Ho;Kim, Jong-Choon
    • Toxicological Research
    • /
    • v.26 no.1
    • /
    • pp.67-74
    • /
    • 2010
  • The present study was conducted to obtain information on the effects of amitraz on reproductive and developmental parameters in rats. The test chemical was administered via the drinking water containing 0, 40, 120, and 360 ppm to male rats from 2 weeks before mating to the end of 14-day mating period and to females from 2 weeks before mating, throughout mating, gestation and up to lactational day 4. During the study period, clinical signs, body weights, food intake, organ weights, reproductive and littering findings, necropsy findings, sperm parameters, and histopathology were examined. At 360 ppm, decreases in the body weight gain, food consumption, and the number of live pups and an increase in the post-implantation loss were observed. In addition, decreases in the seminal vesicle weight and sperm motility were found in males. At 120 ppm, a decrease in the food consumption was found transiently in both males and females, but no reproductive and developmental toxicity was observed in both sexes. There were no signs of either general or reproductive and developmental toxicity in the 40 ppm group. Based on these results, it was concluded that the repeated oral administration of amitraz to rats resulted in a decrease in the food consumption at 120 ppm and decreases in the seminal vesicle weight, sperm motility, and the number of live pups and an increase in the post-implantation loss at 360 ppm in rats. Under these experimental conditions, the no-observed-adverse-effect level (NOAEL) of amitraz for general and reproduction/developmental toxicity was believed to be 120 ppm, and the no-observed-effect level (NOEL) of amitraz was believed to be 40 ppm in rats.

Differential Growth of the Reproductive Organs during the Peripubertal Period in Male Rats

  • Han, Seung Hee;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.17 no.4
    • /
    • pp.469-475
    • /
    • 2013
  • In mammals, puberty is a process of acquiring reproductive competence, triggering by activation of hypothalamic kisspeptin (KiSS)-gonadotropin releasing hormone (GnRH) neuronal circuit. During peripubertal period, not only the external genitalia but the internal reproductive organs have to be matured in response to the hormonal signals from hypothalamic-pituitary-gonadal (H-P-G) axis. In the present study, we evaluated the maturation of male rat accessory sex organs during the peripubertal period using tissue weight measurement, histological analysis and RT-PCR assay. Male rats were sacrificed at 25, 30, 35, 40, 45, 50, and 70 postnatal days (PND). The rat accessory sex organs exhibited differential growth patterns compared to those of non-reproductive organs. The growth rate of the accessory sex organs were much higher than the those of non-reproductive organs. Also, the growth spurts occurred differentially even among the accessory sex organs; the order of prepubertal organ growth spurts is testis = epididymis > seminal vesicle = prostate. Histological study revealed that the presence of sperms in seminiferous tubules and epididymal ducts at day 50, indicating the puberty onset. The number of duct and the volume of duct in epididymis and prostate were inversely correlated during the experimental period. Our RT-PCR revealed that the levels of hypothalamic GnRH transcript were increased significantly on PND 40, suggesting the activation of hypothalamic GnRH pulse-generator before puberty onset. Studies on the peripubertal male accessory sex organs will provide useful references on the growth regulation mechanism which is differentially regulated during the period in androgen-sensitive organs. The detailed references will render easier development of endocrine disruption assay.

Effects of Short-Term Exposure with Tri-n-Butyltin Chloride (TBTCl) and Bisphenol A on the Reproduction of the Striped Field Mouse (TBTCl (tri-n-butyltin chloride)과 bisphenol A에 의한 단기노출이 등줄쥐의 번식에 미치는 영향)

  • Kim, Ji-Hye;Min, Byung-Yoon;Yoon, Myung-Hee
    • Journal of Life Science
    • /
    • v.21 no.3
    • /
    • pp.406-411
    • /
    • 2011
  • To investigate the effects of short-term treatment with tri-n-butyltin chloride (TBTCl) and bisphenol A (BPA) on the reproduction of striped field mice, the mice were intramuscularly injected with TBTCl or BPA immediately before the reproductive season and examined in the reproductive season after keeping them for 4 months. As a result, there were no differences between the control and the compound-treated groups regarding body weight in both sexes, the residual levels of the compounds in the adult males, and the gonadosomatic index (GSI) and the histological structures with LM and EM of the testes and epididymides in both the adult and young males. The infant mortality and abortion rate, however, were high in the TBTCl-treated groups and BPA-treated groups respectively, compared to the control group. Conclusively, it was suggested that short-term treatment with TBTCl or BPA in mice in the non-reproductive season might have inhibited the development of the uterine embryos or fetuses, although it did not induce accumulations of these compounds or affect the reproductive organs of adult and young (F1) males.

Toxicological Effect of Samultang (Herbal Medicine) Administration in the Pregnant Rats and Fetuses - Focusing on dose-response Relationship - (사물탕의 용량별 투여가 임신 랫드와 태자에 미치는 독성학적 연구)

  • Jeon, Sung-Jin;Shin, Heon-Tae;Kim, Kyung-Tae;Park, Hae-Mo;Lee, Sun-Dong
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.14 no.3
    • /
    • pp.1-12
    • /
    • 2010
  • Objective : Samulatang (herbal description) is much used for women's disease in Korean Traditional Medicine. The aim of this study is to evaluate reproductive toxic effect by Samultang in pregnant rats and fetuses, and ascertain a dose-response relationship Method : Pregnant Sprague-Dawley rats were administered with the Samultang at single, double and quadruple dose for 20 days, orally. Pregnant rats were sacrificed at 20th day of gestation, and observed internal and reproductive organs. Live fetuses of gestation were randomly selected and fixed in 95% ethanol. Fetuses were stained with alcian blue and alizarin red S. We observe maternal body weight,, index associated pregnancy, and skeletal malformations in fetus Result : Maternal body weight of Samultang treated group has increased, side effect was not found in maternal body compared to that of control group. There were no significant difference in internal and reproductive organs. Double concentration administered group had lowest value in number of implantation, live fetuses, implantation rate and delivery rate, Also double concentration administered group showed higher early and late resorption rate than the other group. But, these are not significant. In the sex ratio, number of females, bigger than number of males in all Samultang administered groups. The fetuses of dams treated with Samultang didn't showed external and skeletal malformation. Vertebral and sternal variations were observed in single, double and quadruple concentration administered group but, compared to the control, those variations were insignificant. There were no significant changes in number of ribs, cervical, thoracic, lumber, sacral and caudal vertebrae Conclusion : Samultang is not expected to affect on pregnant rats and fetus about maternal body weight and number of live fetuses. There were no significant changes in organ weight, reproductive organs. Although skeletal variations were showed in vertebrae and sternum, treated groups were shown insignificant changes in skeletal variation

Effects of Di(n-butyl) Phthalate on the Developing Immune System of Fetal and Neonatal SD Rats (Di(n-butyl) Phthalate가 태자와 신생자 SD Rat의 면역계 발생에 미치는 영향)

  • 정승태;엄준호;박재현;정형진;황인창;김동섭;하광원;김형수
    • Toxicological Research
    • /
    • v.17 no.2
    • /
    • pp.115-121
    • /
    • 2001
  • Some of endocrine disruptors with sexual hormone-like effects have been increasingly reported to be immunotoxic in many species in recent several years. Phthalate esters have possible effects on the endocrine system. Prenatal exposure to di(n-butyl) phthalate (DBP) has been reported to impair the androgen-dependent development of the male reproductive tract in rat. Therefore, the immunomodulatory effect of DBP was investigated in the developing immune system of fetal and neonatal Sprague-Dawley rats. Timed-bred pregnant SD rats were given to the doses of 0, 250, 500, and 750 mg DBP/kg$\cdot$ body weight /day by gavage once a day from gestational day (GD) 5 to 18. On GD19 or GD22/postnatal day one (PD1), the dams were euthanized, and the changes in organ weights and thymus phenotypes were examined for their offsprings. At 750 mg DBP/kg$\cdot$b.w./day in maternal exposure group, GD19 fetuses showed decreases in body weight. The spleen/body weight ratios were reduced in GD 19 fetuses from the dams exposed to 500 and 750 mg DBP/kg$\cdot$b.w./day. There were no significant changes in thymus and spleen cellularities though these cellularities showed a tendency to decrease in a dose dependent way. In the DBP-exsposed GD22/PD1 offsprings, the body weights, the relative organ weights and the cellularities did not exhibit alteration. Additionally, the percentages of CD3$^{+}$(CD4$^{+}$CD8$^{+}$, CD4$^{+}$CD8$^{-}$, CD4$^{-}$CD8$^{+}$, and CD4$^{-}$CD8$^{-}$) and CD3$^{-}$(CD4$^{+}$CD8$^{+}$, CD4$^{+}$CD8$^{-}$, CD4$^{-}$CD8$^{+}$, and CD4$^{-}$CD8$^{-}$) thymocyte subsets were not changed in any DBP-treated group. The proliferative responses of splenic T cells to Con A and B cells to LPS were decreased in all DBP-exposed GD22/PD1 offsprings.

  • PDF

Effects of 4-t-octylphenol and Nonylphenol on the Reproduction of the Striped Field Mouse (4-t-octylphenol과 nonylphenol이 등줄쥐의 번식에 미치는 영향)

  • Kim, Ji-Hye;Yoon, Myung-Hee
    • Journal of Environmental Science International
    • /
    • v.23 no.2
    • /
    • pp.313-322
    • /
    • 2014
  • To investigate the effects of octylphenol and nonylphenol on the reproduction of the striped field mouse, the mice were subcutaneousely injected with 4-t-octylphenol 800 mg/kg (OP800), nonylphenol 900 mg/kg (NP900) or OP800 + NP900 (OPNP), respectively, in two times a week for 2 months. As the results, there were no differences between the control and the compound-treated groups in the body weight in both sexes, and the GSI (gonadosomatic index) and SVI (seminal vesicles index) in the adult males. But histological abnormalities of the reproductive organs in the mice seems to be related to the compound. This suggestion is supported by the facts that most mice treated with the compounds had only a small number of spermatozoa in the shrunken epididymal tubules. In addition, the shrunken reproductive organ in one mouse treated with the NP, suggests that the abnormalities in the wild striped field mice might be induced by the compound. Furthermore, it is indicated that the compounds must be toxicants to inhibit pregnancy, judging from the fact that all the mice treated with the compounds had failed to deliver.

Phosphorus and Base Cation Inputs through Litterfall Components in Pine Forests after Tree Removal Due to Pine Wilt Disease Disturbance

  • Baek, Gyeongwon;Kim, Seongjun;Kim, Choonsig
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.3
    • /
    • pp.296-301
    • /
    • 2019
  • This study was conducted to measure litterfall and nutrient (P, K, Ca, Mg) inputs under varying degrees of disturbance by pine wilt disease in pine forests in southern Korea. Litterfall was collected to evaluate nutrient responses at different intensities of disturbance (various levels of basal area) by pine wilt disease across 2 years. Phosphorus, Ca, and Mg concentrations in needle litterfall were positively correlated (p < 0.05) with decreased disturbance intensities (increased basal area) depending on the time of sampling, whereas the nutrient concentrations in other litterfall components (branches, bark, reproductive organs, and miscellaneous litterfall) were not significantly correlated (p > 0.05) with the intensity of pine wilt disease disturbance. Dry weight and nutrient inputs through litterfall components decreased linearly with increasing intensity of disturbance by pine wilt disease (p < 0.05), except for the nutrient inputs of branch (K, Ca, Mg) and reproductive organ (K, Ca) litterfall. These results indicate that decreased litterfall across different levels of disturbance may be related to the reduced soil nutrients in pine wilt disease forests.