• Title/Summary/Keyword: Reproductive biology

Search Result 1,539, Processing Time 0.022 seconds

Effect of Fusion Method and Passage Culture of Hanwoo (Korean Cattle) Ear Skin and Fetal Fibroblasts on the Development of Nuclear Transfer Embryos (한우의 귀세포와 태아섬유아세포의 융합 방법과 Passage 배양이 복제수정란의 발달에 미치는 영향)

  • Yang Byoung-Chul;Im Gi-Sun;Lee Sang-Ki;Kim Se-Woong;Kim Dong-Hoon;Seong Hwan-Hoo;Yang Boh-Suk
    • Reproductive and Developmental Biology
    • /
    • v.30 no.1
    • /
    • pp.53-58
    • /
    • 2006
  • The study was conducted to evaluate the effects of culture period and fusion method on the development of somatic cell nuclear transfer (SCNT) embryos reconstituted with Korean bovine fetal fibroblast cells (KbFF) and Korean bovine adult ear skin fibroblast cells (KbESF). KbFF were isolated from a day 51 Korean cattle (Hanwoo) fetus, and KbESF were isolated from a 28 month old Hanwoo calf. The cells were cultured up to 15 weeks (passage 15) in vitro for SCNT. Chamber and electrode needles were used for comparing fusion of reconstituted eggs. The doubling times of KbFF and KbESF were 17.3 hr and 24.3 hr, respectively. The fusion and cleavage rates were significantly higher in needle group (76.1 and 81.2% respectively, P<0.05) than those in chamber group. However, the blastocyst development rate was not different between both groups. Fusion and cleavage rates of NT eggs reconstituted with KbESF did not affected by passage number, however, blastocyst rates were lower in passage $1{\sim}4$ group (21.3%) than passage $5{\sim}8$ (39.4%) and $13{\sim}15$ groups (40.4%, P<0.05). Whereas, fusion rate was lower in passage $1{\sim}4$ group (61.5%) than those of passage $5{\sim}8$(75.0%) and $13{\sim}15$ (76.8%) groups, but cleavage and blastocyst rates were similar regardless of passage number in the KbFF. The results suggest that fusion method can affect the development of SCNT embryos, whereas the long term culture up to 15 passages may not affect the development of SCNT embryos.

Apoptosis and Development of Porcine Parthenogenetic Embryos Activated and Cultured in Different Condition (활성화 및 배양조건이 돼지 단위발생란의 발달 및 Apoptosis에 미치는 영향)

  • Hwang In-Sun;Seo Jin-Sung;Cheong Hee-Tae;Im Gi-Sun
    • Reproductive and Developmental Biology
    • /
    • v.30 no.1
    • /
    • pp.65-70
    • /
    • 2006
  • This study investigated apoptosis and in vitro development of parthenogenetic preimplantation porcine embryos. In vitro matured oocytes for $42{\sim}44h$ were used. Apoptotic cell death was analyzed by using a terminal deoxynucleatidyl transferase mediated deoxyuridine 5-triphosphate nick-end tabling (TUNEL) assay. In experiment 1, oocytes were activated with two electric pulses (CH) of 1.2 kV/cm for $30{\mu}sec$ (E), E + 6-dimethylaminopurine (6-DMAP) or E + cycloheximide (CH) and cultured in PZM-3 under 5% $CO_2$ in air at $38.5^{\circ}C$. In experiment 2, oocytes were activated by E and cultured in PZM-3 or NCSU-23 under a gas atmosphere of 20% $O_2$ ($5%\;CO_2$, in air) or 5% $O_2$ $(5%\;CO_2,\;5%\;O_2\;90%\;N_2)\;at\;38.5^{\circ}C$. Oocytes activated with E+6-DMAP or E+CH showed higher blastocyst rates (36.3% and 32.5%) compared to E alone (27.7%). The frequency of apoptosis according to treatments were 5.3%, 7.7% and 7.1% respectively. Oocytes activated with E alone showed lower (P<0.05) frequency of apoptosis compared to other groups. In experiment 2, parthenotes cultured in PZM-3 showed slightly higher blastocyte rates (28.2% and 29.7%) compared to NCSU-23 (22.6% and 24.4%) regardless of atmosphere. Blastocysts generated in PZM-3 showed lower (P<0.05) apoptosis rate under 20% $O_2$ (9.2% vs 16.9%), whereas those in NCSU-23 had slightly lower apoptosis rate under 5% $O_2$ (14.0% vs 18.4%). This result represents that activation method and culture condition could affect the frequency of apoptosis as well as in vitro developmental rate.

Analysis on Artificial Insemination Failure and Characteristics of Frozen Semen Used for Reproduction of Hanwoo Cow in Gangwon East Area (강원 영동지방 암소 인공수정에 이용된 한우보증씨수소 정액의 인공수정 실패율 분석 및 동결정액성상 분석)

  • Park, Sai-Rom;Hong, Min-Wook;Kim, Hun;Lee, Seung-Kyu;Lee, Yeung-Sub;Kim, Jin-Woo;Lee, Hak-Kyo;Jeong, Dong-Kee;Kim, Jong-Bok;Song, Young-Han;Lee, Sung-Jin
    • Reproductive and Developmental Biology
    • /
    • v.36 no.1
    • /
    • pp.27-32
    • /
    • 2012
  • This study was carried out to investigate artificial insemination (AI) failure status and frozen semen characteristics in Korean proven bulls' number (KPN) semen used for AI of Hanwoo cows in Gangwon East region (Gangneung, Donghae, Taebaek, Samcheok, Sokcho, Yangyang, Goseong). Among semen used for AI, AI failure rate showed lowest at KPN506 (27.6%), whereas highest at KPN593 (77.2%). Correlations of AI failure in between Korean proven bulls semen and cows was 0.2941, which means that AI failure rate of Korean proven bulls semen may have respectable effect on reproduction of Hanwoo cow. In addition, present study was conducted to investigate spermatozoal viability rate, ruptured acrosome rate and active mitochondria in frozen Korean proven bulls semen with flow cytometry. The semen of KPN593 showed significantly ($p$<0.05) higher viability rate in KPN593 (30.49%) than that in KPN637 (37.34%). Furthermore, percentage of ruptured acrosome was lower in KPN637 as 21.37% than in KPN637 (21.37%), but it was not statistically significant. In conclusion, these results indicate that choice of Korean proven bulls semen may correlate positively with conception rate in Hanwoo cow. Therefore, KPN with high AI failure rate might be avoid to increase conception rate and characteristics of frozen semen might be evaluated before its use for AI.

The Effect of Modified Cryopreservation Method on Viability of Frozen-thawed Blastodermal Cells on the Korean Native Chicken(Ogolgye Breed) (한국재래닭(오골계)종 배반엽세포에 있어서 동결 방법의 개선이 융해 후 생존율에 미치는 영향)

  • Kim, Hyun;Kim, Dong-Hun;Park, Soo-Bong;Choi, Seong-Bok;Ko, Yeoung-Gyu;Kim, Jae-Hwan;Do, Yoon-Jung;Park, Hae-Geum;Kim, Sung-Woo
    • Reproductive and Developmental Biology
    • /
    • v.36 no.1
    • /
    • pp.65-70
    • /
    • 2012
  • For reconstituting genetic resource(Korean Native Chicken: KNC) with grem-line chimeric chicken made with cryopreserved biastdermal cells, the experiments were carried out to optimize cryopreservating conditions. Stage X biastdemal cells were collected from KNC embryos and dissociated. Cells were susupended in medium containing cyopretectant and fetal bovine serum(FBS), and distributed into plastic ampules. Cell susupensions were seeded to induce ice formation at $-7^{\circ}C$ to $-35^{\circ}C$ at in the experiments, the effect of modification of dissociation way, concentration of FBS and cell density on the vaibility of frezen-thawed cells were investigated by trypan blue exclusion. Then change the way of cell dissociation from pipetting to short time vortexing, viability of frozen-thawed cell tended to be increaced from 29 % to 52 %. Increase concentraition of FBS in frozen medium from 20 % to 80 % made viability of thawed cell from 28 % to 35 %. The viability of thawed cells were 33.9% frozen at 2 embryos/0.5 ml, and 43.6 % frozen at 20 embryos/0.5 ml. Furthermore, combination of three modifications make big improvement. The viability of frozen-thawed cell was 60 % for combinated method, and 41 % for general method. This result means the advance to practical cryoreservation of blastdermal cell of the KNC(Ogolgye breed).

Analysis of Hematologic Characteristics of Endangered Korean Native Cattle according to the Age (성장단계별 멸종위기 희소한우의 혈액학적 특성분석)

  • Kim, Hyun;Ko, Yeoung-Gyu;Kim, Nam-Tae;Choe, Changyong;Seong, Hwan-Hoo
    • Reproductive and Developmental Biology
    • /
    • v.39 no.1
    • /
    • pp.13-21
    • /
    • 2015
  • The importance of genetic resource preservation has been highlighted in the literature as a means of maintaining genetic diversity. Investigations for hematologic values and the differential count of white blood cell count (WBC) for Korean indigenous cattle (KIC) and endangered indigenous cattle (EIC) are rarely performed. Therefore, the objective of this study was to investigate the hematologic values of total 40 EIC (White, Black, Mini cattle) and 35 KIC as control by analysis of hematologic characteristics. As a result, the mean values of RBC and platelet of EIC were significantly decreased by age (p<0.05). The mean values of RBC, HCT, MCV and MCHC between EIC and KIC of the same age (2~3 years) showed the statistical significance (p<0.05). Also, in the WBC of EIC, the mean values were decreased according to the age from $13.9{\times}10^3/{\mu}L{\sim}12.7{\times}10^3/{\mu}L$ under 1 year to $9.1{\times}10^3/{\mu}L{\sim}11.5{\times}10^3/{\mu}L$ over 2 years respectively. In the differential count of WBC of EIC (White, Black, Mini cattle), it showed generally the rates of 40.2%, 52.2%, 49.0% lymphocyte and 27.2%, 33.9%, 32.0% segmented neutrophil from 2~3 years respectively. Result of this study will be used for establishing reference range for blood analysis in EIC such as white, black and mini cattle. This study reported hematological values which could serve as baseline information for comparison in conditions of nutrient deficiency, physiological and health status of endangered Korean native cattle. In addition, this study provides a valuable resource for further investigations of the preservation of rare genetic stocks underlying traits of interest in cattle.

Effects of Elevated $CO_2$ Concentration and Temperature on the Response of Seed Germination, Phenology and Leaf Morphology of Phytolacca insularis(Endemic species) and Phytolacca americana(Alien species) ($CO_2$농도와 온도증가에 따른 한국특산식물 섬자리공과 귀화식물 미국자리공의 발아, 식물계절 및 잎의 형태학적 반응연구)

  • Kim, Hae-Ran;You, Young-Han
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.1
    • /
    • pp.62-68
    • /
    • 2010
  • This study was conducted to find out how the germination, phenology and leaf morphology of Phytolacca insularis(endemic species of Korea) and P. americana(alien species) react to the global warming situation. Seed and seedlings of two species were sampled and placed under two separate conditions for the experiment. One of the seed and seedlings was treated in the glass house with control(ambient $CO_2$+ambient temperature, (AC-AT), and the other with control(elevated $CO_2$+ elevated temperature, EC-ET), over the period of one year, 2008-2009. The germination rate of two species was fast, and the time of their germination started early, when they were treated at EC-ET than at AC-AT. Furthermore, the germination rate of Phytolacca insularis(endemic species of Korea) was found to be comparatively lower than that of P. americana(alien species). The former showed only vegetative growth whereas the latter showed both vegetative growth and reproductive growth in one year period. The more $CO_2$ degree and temperature increased, phenological responses of two species, including leaf growth, the formation of flower stems, flowering, and fruit maturing, became much faster, and the time of their leaf-yellowing was delayed. The lamina length of P. insularis was not significantly affected by elevated $CO_2$ and temperature. The lamina length of P. americana, on the other hand, became longer at EC-ET than at AC-AT, but the leaf width of both species increased at EC-ET. As for the number of leaves, both species showed no difference. Finally, the ratio of the leaf area of P. insularis was high at AC-AT, but P. americana was high at EC-ET. These results indicate that P. americana, aliens species, reacts more sensitively to global warming than P. insularis, endemic species, does.

Microsporogenesis of Hibiscus syriacus L and Its Sporoderm Differentiation (무궁화의 화분형성 및 화분벽의 분화발달)

  • 김인선
    • Journal of Plant Biology
    • /
    • v.38 no.1
    • /
    • pp.95-105
    • /
    • 1995
  • Complete microsporogenesis of Hibiscus syriacus L. were carried out employing LM, TEM, and SEM to investigate the pollen ontogeny that undergoes considerable structural differentiation. The process first began with several cell diYisions in the anther primordium that produces 3 different tissues of epidennal, archesporial, and connective tissues. Only archesporial tissue involved further differentiation into the tapetum and formation of reproductive cells, pollen mother cells (PMC). The tapetum and PMC were closely associated with each other structurally and metabolically by exhibiting numerous plasmodesmata, mitochondria, and many small vacuoles in their dense cytoplasm. A callosic wall began to surround the PMC while meiosis took place in the PMC to produce 4 microspores. When thick callose encircled each microspore as a frame, the sporodenn development initiated from the plasma membrane of a pollen grain in a tetrad. The first fonned sporoderm layer was bacules and tectum of sexine that originated from the plasma membrane. After the dissolution of a callose, further development Qf sporoderm continued in the order of nexine 1, nexine 2, and intine layer. The nexine layer was thicker (ca. $2-3.5\;\mu\textrm{m}$) than the intine layer whose thickness was about $0.9-1.5\;\mu\textrm{m}$. Upon completion of the sporoderm development, that is after intine formation, spines and apertures of pollen surface ornamentation initiated from the tectum. Spines were dimorphic, about $4-9\;\mu\textrm{m}\;an;15-20\;\mu\textrm{m}$ in length, and no basal cushion was detected. The mature pollen grains ranged $100-200\;\mu\textrm{m}$ in diameter, but their average was about $170\;\mu\textrm{m}$. About 120 spines were observed over the spheroidal pollen surface. Apertures were simple punctures of $2-3\;\mu\textrm{m}$ in diameter and about 50 apertures were arranged somewhat helically over the surface. Comparing such features of form and size of the pollen, sporodenn sculpture and structure, and aperture and spine conditions with known evolutionary trends in the genus Hibiscus, Hibiscus syriacus seemed to possess many advanced features in the sporodenn differentiation.iation.

  • PDF

STUDIES ON THE DIMORPHISM AND TRANSITION OF BISEXUALITY OF HETEROSTYLOUS POLYGONACEAE (여뀌과 이형경식물의 Dinorphism과 Bisexuality의 변화)

  • Harn, Chang-Yawl
    • Journal of Plant Biology
    • /
    • v.3 no.2
    • /
    • pp.6-18
    • /
    • 1960
  • The present experiments were designed in order to clarify the differences between the long and short styled plants and the transgressive gradition in the degree of dimorphism among the three heterostylous species of the Polygonus, P. japonica, F. esculentum, and P. senticosa, based on investigations regarding the floral structure, ecological and physiological traits, the results of which are summarized as follows: (1) P. japonica, although it exhibits typical dimorphism, has undergone so high a differentiation between long and short styled that its long styled individuals behave as if they were female; and short styled individuals as if male. In long-styled individuals, filament, anther, and pollen grains show signs of degeneration, most of the pollen being abortive. On the other hand, in short styled individuals, the filament, anther, and pollen grains have attained remarkable development; the pollen grians are large and fertile. In short-plant the fertilized flowers readily drop off in every stage of their embryo development. This species has completely lost the self-fertile property, which is characteristic of the non-dimorphic Polygonum genus. Although this specsei typically exhibits the physiological characteristics of the non-dimorphic Polygonum genus. Although this specisei typically exhibits the physiological characteristics of dimorphism in controlled pollination, the short-styled individuals bear no seed in nature, thus misleading taxonomists to idenfity the short-styled plant as male. 2) The morphological feature of the flower organ of P. senticosa obviously indicates definite dimorphism. Physiologically, however, no differentiation towards dimorphism was observed, the species still retaining, both in long and short-individuals, the self-fertile property common to the Polygonum genus. Elaborate examinations revealed that regardless of the modes of pollination, both fertiization and seed setting flourish, no differentiation betwen legitimate and illegitimate unions being recognizable. This sort of physiological property has not been observed in the investigations of other heterostylous plants. It is assumed that this species is differentiated structurally into dimorphism, but not yet physiologically. In nature, however, this plant would have more opportunities to be cross-pollinated, i.e., legitimately combined, than self-pollinated because of the development of two forms of flowers. 3) In terms of heterostylism, the F. esculentum just occupies the intermediate position between P. japonica and P. senticosa structurally, ecologically, and physiologically. Doescription of some of the physiological behavior of the plant will suffice to demonstrate the above facts. While P. japonica has completely lost its self-fertile property, P. senticosa still retains it wolly. In F. esculentum 2-6% of self-fertility is the result in illegitimate combination. There occur occasionally hereditary self fertile individuals among some of the F. or 20 min. irradiation plot, when they reach any stage of the same bacterial population. In addition to this increase of total population in the plots with the more dose of UV light irradiation, it seems that the more dose of UV light irradiation is the more shortened the generation time of Azotobacter. Therefore, it is clear that variation of reproductive rate must be, mere or less, due to the genetic effects induced by UV light irradiation. On the other hand, the lag phase or logarithmic growth phase in nonirradiated culture is shortened prominently, and this must be due to the difference in bacterial number of the original inoculm. The generation time of Azotobacter is shortened by exogeneous treatment of nuclei acid derivatives, and the degree is greater in case of DNA derivatives than RNA dervatives. W.H. Price reported that the rate of ribose nucleic acid to protein in Staphylococcus muscae is proportional to the generation time: that is the faster the cell can form ribose nucleic acid, the more rapid its growth. This explains the shortening of generation time by exogeneous RNA derivatives in this work reasonably. On the other hand, it is well known that the desoxyribose nuclic acid content per cell is constant and independent of the generation time. A.D. Laren and W.N. Takahashi reported that the infectious RNA from TMV is 6 times as sensitive to inactivation by UV as it is in the form of intact virus, and that inactivation of infectious TMV involves onlu a local change on RNA chain. But, the effect of exogeneous DNA in this work suggests that irradiated living cell which cotain DNA bring about some change on DNA moleculs as well as RNA molecules. And if the mutagenic effects of UV take into consideration, it is very reasonable. Therefore, it is clear that the variation of the generation time by UV irradiation is, more or less, due to the genetic effects. Therefore, it seems that the shortness of the average lifewpan of Azotobacter by UV irradiation is resulted not only from the influence of the environmental conditions, but also from the variation of genetic factor of the individual.

  • PDF

Mammalian Reproduction and Pheromones (포유동물의 생식과 페로몬)

  • Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.10 no.3
    • /
    • pp.159-168
    • /
    • 2006
  • Rodents and many other mammals have two chemosensory systems that mediate responses to pheromones, the main and accessory olfactory system, MOS and AOS, respectively. The chemosensory neurons associated with the MOS are located in the main olfactory epithelium, while those associated with the AOS are located in the vomeronasal organ(VNO). Pheromonal odorants access the lumen of the VNO via canals in the roof of the mouth, and are largely thought to be nonvolatile. The main pheromone receptor proteins consist of two superfamilies, V1Rs and V2Rs, that are structurally distinct and unrelated to the olfactory receptors expressed in the main olfactory epithelium. These two type of receptors are seven transmembrane domain G-protein coupled proteins(V1R with $G_{{\alpha}i2}$, V2R with $G_{0\;{\alpha}}$). V2Rs are co-expressed with nonclassical MHC Ib genes(M10 and other 8 M1 family proteins). Other important molecular component of VNO neuron is a TrpC2, a cation channel protein of transient receptor potential(TRP) family and thought to have a crucial role in signal transduction. There are four types of pheromones in mammalian chemical communication - primers, signalers, modulators and releasers. Responses to these chemosignals can vary substantially within and between individuals. This variability can stem from the modulating effects of steroid hormones and/or non-steroid factors such as neurotransmitters on olfactory processing. Such modulation frequently augments or facilitates the effects that prevailing social and environmental conditions have on the reproductive axis. The best example is the pregnancy block effect(Bruce effect), caused by testosterone-dependent major urinary proteins(MUPs) in male mouse urine. Intriguingly, mouse GnRH neurons receive pheromone signals from both odor and pheromone relays in the brain and may also receive common odor signals. Though it is quite controversial, recent studies reveal a complex interplay between reproduction and other functions in which GnRH neurons appear to integrate information from multiple sources and modulate a variety of brain functions.

  • PDF

The Role of the Endometrium and Embryo in Human Implantation (인간 착상 과정에 자궁내막과 배아의 역할)

  • Jee, Byung-Chul
    • Development and Reproduction
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 2009
  • Implantation itself is governed by an array of endocrine, paracrine and autocrine modulators, of embryonic and maternal origin. Window of implantation is the unique temporal and spatial expression of factors allows the embryo to implant via signaling, appositioning, attachment, and invasion in a specific time frame of $2{\sim}4$ days. When the embryo has arrived in the uterine cavity, a preprogrammed sequence of events occurs, which involves the production and secretion of a multitude of biochemical factors such as cytokines, growth factors, and adhesion molecules by the endometrium and the embryo, thus leading to the formation of a receptive endometrium. Cytokines such as LIF, CSF-1, and IL-1 have all been shown to play important roles in the cascade of events that leads to implantation. Integrin, L-selectin ligands, glycodelin, mucin-1, HB-EGF and pinopodes are involved in appositioning and attachment. The embryo also produces cytokines and growth factors (ILs, VEGF) and receptors for endometrial signals such as LIF, CSF-1, IGF and HB-EGF. The immune system and angiogenesis play an important role. The usefulness of these factors to assess endometrial receptivity and to estimate the prognosis for pregnancy in natural and artificial cycles remains to be proven. Integrins, pinopodes, glycodelin and LIF (from biopsies) are promising candidates; from uterine flushings, glycodelin and LIF are also candidates. The ideal serum marker is not available, but VEGF, glycodelin and CSF have some clinical implications. Further evaluation that includes larger groups of infertile women and fertile controls are needed to elucidate whether their presence in plasma, flushing fluid, or endometrial samples can be used as some kind of a screening tool to assess endometrial function and prognosis for pregnancy before and after artificial reproductive therapy. A better understanding of their function in human implantation may lead to therapeutic intervention, thereby improving the success rate in reproduction treatment. New molecular techniques are becoming available for measuring both embryonic and endometrial changes prior to and during implantation. The use of predictive sets of markers may prove to be more reliable than a single marker. Ultimately, the aim is to use these tools to increase implantation in artificial cycles and consequently improve live-birth rates.

  • PDF