• Title/Summary/Keyword: Reproduction structure of population

Search Result 52, Processing Time 0.032 seconds

Genetic Diversity and Population Structure of Codium fragile (SURINGAR) HARlOT in Korea Using Allozymes (알로자임을 이용한 청각의 유전적 다양성과 집단구조)

  • Lee Bok-Kyu;Park So-Hye;Heo Youn-Seong;Ju Mu-Teol;Choi Joo-Soo;Huh Man-Kyu
    • Journal of Life Science
    • /
    • v.16 no.2 s.75
    • /
    • pp.213-218
    • /
    • 2006
  • The study of genetic diversity and population structure was carried out in the Codium fragile using allozyme analysis. Although this species has been regarded as a ecologically and economically important source, there is no report on population structure in Korea. Starch gel electrophoresis was used to investigate the allozyme variation and genetic structure of four Korean populations of this species. Of the 15 genetic loci surveyed, nine (60.0%) was polymorphic in at least one population. Genetic diversity was high at the species level ($H_{ES}$=0.144), and, that of the population level was relatively low ($H_{EP}$=0.128). Nearly 87% of the total genetic diversity in C. fragile was apportioned within populations. The predominant asexual reproduction, population fragmentation, low fecundity, geographic isolation and colonization process are proposed as possible factors contributing to low genetic diversity in this species. The indirect estimated of gene flow based on $G_{ST}$ was 1.69. The moderate level of gene flow in C. fragile populations is mainly caused by thallus developed from isolated utricles dispersal via sea current.

Genetic diversity and relationship of Korean chicken breeds using 12 microsatellite markers

  • Kim, Yesong;Yun, Ji Hye;Moon, Seon Jeong;Seong, Jiyeon;Kong, Hong Sik
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.3
    • /
    • pp.154-161
    • /
    • 2021
  • A number of Korean Chicken breeds were registered in Domestic Animal Diversity Information System (DAD-IS, http://dad.fao.org/) of the Food and Agriculture Organization (FAO). Evaluation of genetic diversity and relationship of local breeds is an important factor towards the identification of unique and valuable genetic resources. Therefore, this study aimed to analysis the genetic diversity and relationship of 22 Korean Chicken breeds using 12 microsatellite (MS) markers. The mean number of alleles for each variety was 5.52, ranging from a 3.75 (Leghorn F; NF) to a 7.0 (Ross). The most diverse breed was the Hanhyup3 (HCC), which had the highest expected heterozygosity (HExp) (0.754) and polymorphic information content (PIC) (0.711). The NF was the least diverse population, having the lowest HExp (0.467) and PIC (0.413). As a result of the principal coordinates analysis (PCoA) and factorial correspondence analysis (FCA) confirmed that Hy-line Brown (HL) and Lohmann Brown (LO) are very close to each other and that Leghorn and Rhode Island Red (RIR) are clearly distinguished from other groups. Thus, the reliability and power of identification using 12 types of MS markers were improved, and the genetic diversity and probability of individual discrimination were confirmed through statistical analysis. This study is expected to be used as basic data for the identification of Korean chicken breeds, and our results indicated that these multiplex PCR marker sets will have considerable applications in population genetic structure analysis.

Genetic Diversity and Population Structure in East Asian Populations of Plantago asiatica (동아시아 질경이 집단의 유전적 다양성과 집단구조)

  • Huh, Man Kyu
    • Journal of Life Science
    • /
    • v.23 no.6
    • /
    • pp.728-735
    • /
    • 2013
  • Plantago asiatica (Plantaginaceae) is a wind-pollinated plant that grows mainly on fields in East Asia. Starch gel electrophoresis was used to investigate the allozyme diversity and population structure of 18 populations of this species. Although the plantain populations were isolated and patchily distributed, they maintained a high level of genetic diversity; the average percentage of polymorphic loci was 57.1%, the mean number of alleles per locus was 2.07, and the average heterozygosity for 18 populations was 0.201. The combination of a predominant wind-pollinated, mix-mating reproduction, large population sizes, high gene flow between subpopulations, and a propensity for high fecundity may explain the high level of genetic diversity within populations. A direct gradient in overall genetic diversity is associated with latitude. Genetic diversity of P. asiatica is markedly decreased from $35^{\circ}3^{\prime}$ to high latitude and decreased from $35^{\circ}3^{\prime}N$ to low latitude, whereas there does not show a longitudinal gradient in genetic diversity.

Growth and Reproduction of Deep-Water Mud Shrimp (Solenocera melantho) around Geomun Island, Korea (거문도 해역 대롱수염새우(Solencer melantho)의 성자과 성 성숙)

  • OH Taeg Yun;CHOI Jung Hwa;CHA Hyung Kee;KIM Joo Il;KIM Dea Hyun;LEE Ju Hee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.38 no.4
    • /
    • pp.232-238
    • /
    • 2005
  • This paper describes reproduction, population structure, growth and size at sexual maturity of a deep-water mud shrimp (Solenocera melantho) in the adjacent waters of Geomun Island, Korea. The shrimp was caught by a beam trawl from November 1998 to December 1999. Spawning period was estimated by gonadosomatic index to be from August to early November with a peak in October to early November. Female shrimps were $12\%$ matured at 16 mm in carapace length, $33\%$ matured at 18 mm and $75\%$ matured at 22 mm. The size at $50\%$ maturity for female was estimated to be 20.65 mm in carapace length. Breeding season was estimated to be from August to early November with a peak in October to early November. The size at $50\%$ inseminated was 19.81 mm CL. The fecundity was 87,500-405,200 and related exponentially to carapace length and total weight. This species survived between 25 and 26 months. The maximum carapace length of females and males were 48 mm and 34 mm respectively. Sex ratio was $51.3\%$, and the females were preponderant. Growth was estimated by modified von Bertalanffy growth function incorporating seasonal variation in growth in both years females (K=1.019/yr and $L_{\infty}$=51.731 mm CL) grew faster, reaching a larger size at a given age than males (K=1.848/yr, and $L_{\infty}$=27.499 mm CL). This is indicated by differences in growth performance indices $(\varphi')$ between females (3.291) and males (3.145).

Spatial distribution patterns of old-growth forest of dioecious tree Torreya nucifera in rocky Gotjawal terrain of Jeju Island, South Korea

  • Shin, Sookyung;Lee, Sang Gil;Kang, Hyesoon
    • Journal of Ecology and Environment
    • /
    • v.41 no.8
    • /
    • pp.223-234
    • /
    • 2017
  • Background: Spatial structure of plants in a population reflects complex interactions of ecological and evolutionary processes. For dioecious plants, differences in reproduction cost between sexes and sizes might affect their spatial distribution. Abiotic heterogeneity may also affect adaptation activities, and result in a unique spatial structure of the population. Thus, we examined sex- and size-related spatial distributions of old-growth forest of dioecious tree Torreya nucifera in extremely heterogeneous Gotjawal terrain of Jeju Island, South Korea. Methods: We generated a database of location, sex, and size (DBH) of T. nucifera trees for each quadrat ($160{\times}300m$) in each of the three sites previously defined (quadrat A, B, C in Site I, II, and III, respectively). T. nucifera trees were categorized into eight groups based on sex (males vs. females), size (small vs. large trees), and sex by size (small vs. large males, and small vs. large females) for spatial point pattern analysis. Univariate and bivariate spatial analyses were conducted. Results: Univariate spatial analysis showed that spatial patterns of T. nucifera trees differed among the three quadrats. In quadrat A, individual trees showed random distribution at all scales regardless of sex and size groups. When assessing univariate patterns for sex by size groups in quadrat B, small males and small females were distributed randomly at all scales whereas large males and large females were clumped. All groups in quadrat C were clustered at short distances but the pattern changed as distance was increased. Bivariate spatial analyses testing the association between sex and size groups showed that spatial segregation occurred only in quadrat C. Males and females were spatially independent at all scales. However, after controlling for size, males and females were spatially separated. Conclusions: Diverse spatial patterns of T. nucifera trees across the three sites within the Torreya Forest imply that adaptive explanations are not sufficient for understanding spatial structure in this old-growth forest. If so, the role of Gotjawal terrain in terms of creating extremely diverse microhabitats and subsequently stochastic processes of survival and mortality of trees, both of which ultimately determine spatial patterns, needs to be further examined.

RAPD Variation and Phenetic Relationships for Six Populations of Equisetum pratense in Korea (한국 내 물쇠뜨기 6개 집단의 RAPD 변이와 표현형 관계)

  • Huh, Man Kyu;Choi, Jaewon;Lee, Jangseop;Jin, Bogye;Kim, Hyun Kyung
    • Journal of Life Science
    • /
    • v.24 no.6
    • /
    • pp.612-617
    • /
    • 2014
  • The phenetic relationships among six natural populations of Equisetum pratense in Korea were investigated at the population level by constructing a tree based on Random Amplified Polymorphic DNA (RAPD) markers. RAPD analysis was also conducted to estimate genetic diversity and the population structure of E. pratense. A mean of 26.7% at the six population levels indicated polymorphism. E. pratense was found to have fewer alleles per locus (1.267) and fewer effective alleles per locus (1.176). Genetic diversity (0.102) in E. pratense is lower than the average for species with similar life history traits. Total genetic diversity values (HT) varied between 0.112 (OPD-07) and 0.445 (OPD-16), for an average overall polymorphic locus of 0.141. Inter-locus variation in the within-population genetic diversity ($H_S$) was low (0.102). Asexual reproduction, small population size, and the colonization process are proposed as possible factors contributing to the observed low genetic diversity in E. pratense. On a per-locus basis, the proportion of total genetic variation due to differences among populations ($G_{ST}$) ranged from 0.129 for OPD-07 to 0.455 for OPD-09, with a mean of 0.277. This indicated that about 27.7% of the total variation was among populations. Thus, genetic variation (72.3%) resided within populations. This study contributes new information for research on the taxonomy and population genetics of E. pratense.

A study on the optimal sizing and topology design for Truss/Beam structures using a genetic algorithm (유전자 알고리듬을 이용한 트러스/보 구조물의 기하학적 치수 및 토폴로지 최적설계에 관한 연구)

  • 박종권;성활경
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.3
    • /
    • pp.89-97
    • /
    • 1997
  • A genetic algorithm (GA) is a stochastic direct search strategy that mimics the process of genetic evolution. The GA applied herein works on a population of structural designs at any one time, and uses a structured information exchange based on the principles of natural selection and wurvival of the fittest to recombine the most desirable features of the designs over a sequence of generations until the process converges to a "maximum fitness" design. Principles of genetics are adapted into a search procedure for structural optimization. The methods consist of three genetics operations mainly named selection, cross- over and mutation. In this study, a method of finding the optimum topology of truss/beam structure is pro- posed by using the GA. In order to use GA in the optimum topology problem, chromosomes to FEM elements are assigned, and a penalty function is used to include constraints into fitness function. The results show that the GA has the potential to be an effective tool for the optimal design of structures accounting for sizing, geometrical and topological variables.variables.

  • PDF

The Changes of Socio-economic Environments of Rice- and Fruit-cultivated Area : In Case of Rural Villages in Sangju Region, Kyongsangbuk-do (미작과 과수 재배 지역의 사회와 경제 변화 : 상주권 농촌 촌락을 사례로)

  • Park, Kyu-Taeg
    • Journal of the Korean association of regional geographers
    • /
    • v.10 no.4
    • /
    • pp.744-756
    • /
    • 2004
  • The purpose of this study is to investigate the natural environments and the changing socio-economic activities of the rice and fruit - centered rural village located in Sangju region, Kyongsangbuk-do. Its results are summarized in the followings. Firstly, most of the rural villages in Sangju region is located on the erosional basin of Sobaek range and the sedimentary region of Nakdong river and the farmer's life of those regions has been influenced by such a natural environment. Secondly, the reproduction structure of population in the rural village of Sangju region had been maintained until the 1970s. After that, however, it was broken because the young generation of the rural villages moved to large cities to get a job or to receive high level of education. Thirdly, the changing path of the rural villages of Sangju region was different based on a type of crop and its related mode of production after the 1980s. The socio-economic structure of the rural village has been developed based on either a rice oriented traditional mode of production or a fruit-oriented commercial mode of production. The two villages, Ch'ekdong 1 ri, Hamch'ang-up and Sinch'on 2 ri, Modong-myon have been changed according to the path of a traditional and commercial mode of production, respectively.

  • PDF

Kidney Organoid Derived from Human Pluripotent and Adult Stem Cells for Disease Modeling

  • Hyun Mi Kang
    • Development and Reproduction
    • /
    • v.27 no.2
    • /
    • pp.57-65
    • /
    • 2023
  • Kidney disease affects a significant portion of the global population, yet effective therapies are lacking despite advancements in identifying genetic causes. This limitation can be attributed to the absence of adequate in vitro models that accurately mimic human kidney disease, hindering targeted therapeutic development. However, the emergence of human induced pluripotent stem cells (PSCs) and the development of organoids using them have opened up a way to model kidney development and disease in humans, as well as validate the effects of new drugs. To fully leverage their capabilities in these fields, it is crucial for kidney organoids to closely resemble the structure and functionality of adult human kidneys. In this review, we aim to discuss the potential of using human PSCs or adult kidney stem cell-derived kidney organoids to model genetic kidney disease and renal cancer.

Genetic diversity and population structure in five Inner Mongolia cashmere goat populations using whole-genome genotyping

  • Tao Zhang;Zhiying Wang;Yaming Li;Bohan Zhou;Yifan Liu;Jinquan Li;Ruijun Wang;Qi Lv;Chun Li;Yanjun Zhang;Rui Su
    • Animal Bioscience
    • /
    • v.37 no.7
    • /
    • pp.1168-1176
    • /
    • 2024
  • Objective: As a charismatic species, cashmere goats have rich genetic resources. In the Inner Mongolia Autonomous Region, there are three cashmere goat varieties named and approved by the state. These goats are renowned for their high cashmere production and superior cashmere quality. Therefore, it is vitally important to protect their genetic resources as they will serve as breeding material for developing new varieties in the future. Methods: Three breeds including Inner Mongolia cashmere goats (IMCG), Hanshan White cashmere goats (HS), and Ujimqin white cashmere goats (WZMQ) were studied. IMCG were of three types: Aerbas (AEBS), Erlangshan (ELS), and Alashan (ALS). Nine DNA samples were collected for each population, and they were genomically re-sequenced to obtain high-depth data. The genetic diversity parameters of each population were estimated to determine selection intensity. Principal component analysis, phylogenetic tree construction and genetic differentiation parameter estimation were performed to determine genetic relationships among populations. Results: Samples from the 45 individuals from the five goat populations were sequenced, and 30,601,671 raw single nucleotide polymorphisms (SNPs) obtained. Then, variant calling was conducted using the reference genome, and 17,214,526 SNPs were retained after quality control. Individual sequencing depth of individuals ranged from 21.13× to 46.18×, with an average of 28.5×. In the AEBS, locus polymorphism (79.28) and expected heterozygosity (0.2554) proportions were the lowest, and the homologous consistency ratio (0.1021) and average inbreeding coefficient (0.1348) were the highest, indicating that this population had strong selection intensity. Conversely, ALS and WZMQ selection intensity was relatively low. Genetic distance between HS and the other four populations was relatively high, and genetic exchange existed among the other four populations. Conclusion: The Inner Mongolia cashmere goat (AEBS type) population has a relatively high selection intensity and a low genetic diversity. The IMCG (ALS type) and WZMQ populations had relatively low selection intensity and high genetic diversity. The genetic distance between HS and the other four populations was relatively high, with a moderate degree of differentiation. Overall, these genetic variations provide a solid foundation for resource identification of Inner Mongolia Autonomous Region cashmere goats in the future.