• Title/Summary/Keyword: Representative volume

Search Result 328, Processing Time 0.027 seconds

Determination of representative volume element in concrete under tensile deformation

  • Skarzyski, L.;Tejchman, J.
    • Computers and Concrete
    • /
    • v.9 no.1
    • /
    • pp.35-50
    • /
    • 2012
  • The 2D representative volume element (RVE) for softening quasi-brittle materials like concrete is determined. Two alternative methods are presented to determine a size of RVE in concrete subjected to uniaxial tension by taking into account strain localization. Concrete is described as a heterogeneous three-phase material composed of aggregate, cement matrix and bond. The plane strain FE calculations of strain localization at meso-scale are carried out with an isotropic damage model with non-local softening.

Estimation of Representative Mechanical Property of Porous Electrode for Secondary Batteries with Homogenization Method (균질화 기법을 이용하여 기공이 있는 이차전지 극판의 대표 기계 물성 도출을 위한 연구)

  • Pyo, Changmin;Kim, Jaewoong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.85-91
    • /
    • 2022
  • The demand for electric vehicles has increased because of environmental regulations. The lithium-ion battery, the most widely used type of battery in electric vehicles, is composed of a cathode, an anode, and an electrolyte. It is manufactured according to the pole plate, assembly, and formation processes. To improve battery performance and increase manufacturing efficiency, the manufacturing process must be optimized. To do so, simulation can be used to reduce wasted resources and time, and a finite-element method can be utilized. For high simulation quality, it is essential to reflect the material properties of the electrode by considering the pores. However, the material properties of electrodes are difficult to derive through measurement. In this study, the representative volume element method, which is a homogenization method, was applied to estimate the representative material properties of the electrode considering the pores. The representative volume element method assumes that the strain energy before and after the conversion into a representative volume is conserved. The method can be converted into one representative property, even when nonhomogeneous materials are mixed in a unit volume. In this study, the material properties of the electrode considering the pores were derived. The results should be helpful in optimizing the electrode manufacturing process and related element technologies.

Improvement of Representative Value through Comparison of the Reliability of point detector : focusing on traffic volume (지점검지기 신뢰도 비교를 통한 대표치 생성 개선방안 : 구간 교통량을 중심으로)

  • Choi, Yoon-Hyuk;Lee, Yoon-Seok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.5
    • /
    • pp.22-35
    • /
    • 2013
  • With the increase in image detectors, concerns about the reliability of traffic information are increasing. In this paper, we propose a method to generate reliable traffic volume using analysis of the point detector data as a representative value. Therefore, targeting expressway, we analyzed the difference in traffic volume collected by loop and image detector, and verified statistically using t-test, and finally analyzed the error rate compare to the real traffic volume. Analysis revealed that there was a statistically difference the traffic date collected by the loop detector and the image detector, in the same period, the same time, respectively. In addition, the difference between the actual traffic volume and traffic that have been collected in a loop detector was the lowest Therefore, creating a traffic volume of representative value, we proposed a method to use loop detector than the average traffic volume collected by each detector. It shows that it is more important to use one high-quality data rather than various low-quality data to produce a representative value.

Influence of the microstructure on effective mechanical properties of carbon nanotube composites

  • Drucker, Sven;Wilmers, Jana;Bargmann, Swantje
    • Coupled systems mechanics
    • /
    • v.6 no.1
    • /
    • pp.1-15
    • /
    • 2017
  • Despite the exceptional mechanical properties of individual carbon nanotubes (CNTs), the effective properties of CNT-reinforced composites remain below expectations. The composite's microstructure has been identified as a key factor in explaining this discrepancy. In this contribution, a method for generating representative volume elements of aligned CNT sheets is presented. The model captures material characteristics such as random waviness and entanglement of individual nanotubes. Thus it allows studying microstructural effects on the composite's effective properties. Simulations investigating the strengthening effect of the application of a pre-stretch on the CNTs are carried out and found to be in very good agreement with experimental values. They highlight the importance of the nanotube's waviness and entanglement for the mechanical behavior of the composite. The presented representative volume elements are the first to accurately capture the waviness and entanglement of CNT sheets for realistically high volume fractions.

Effect of confining stress on representative elementary volume of jointed rock masses

  • Wu, Na;Liang, Zhengzhao;Li, Yingchun;Qian, Xikun;Gong, Bin
    • Geomechanics and Engineering
    • /
    • v.18 no.6
    • /
    • pp.627-638
    • /
    • 2019
  • Estimation of representative elementary volume (REV) of jointed rock masses is critical to predict the mechanical behavior of field-scale rock masses. The REV of jointed rock masses at site is strongly influenced by stress state. The paper proposed a method to systematically studied the influence of confining stress on the REV of jointed rock masses with various strengths (weak, medium and strong), which were sourced from the water inlet slope of Xiaowan Hydropower Station, China. A finite element method considering material heterogeneity was employed, a series of two-dimensional (2D) models was established based on the Monte-Carlo method and a lot of biaxial compressive tests were conducted. Numerical results showed that the REV of jointed rock masses presented a step-like reduction as the normalized confining stress increased. Confining stress weakened the size effect of jointed rock masses, indicating that the REV determined under uniaxial compression test can be reasonably taken as the REV of jointed rock masses under complexed in-situ stress environment.

A Study on the Prediction of Warpage During the Compression Molding of Glass Fiber-polypropylene Composites (유리섬유-폴리프로필렌 복합재료의 압축 공정 중 뒤틀림 예측에 관한 연구)

  • Gyuhyeong Kim;Donghyuk Cho;Juwon Lee;Sangdeok Kim;Cheolmin Shin;Jeong Whan Yoon
    • Transactions of Materials Processing
    • /
    • v.32 no.6
    • /
    • pp.367-375
    • /
    • 2023
  • Composite materials, known for their excellent mechanical properties and lightweight characteristics, are applied in various engineering fields. Recently, efforts have been made to develop an automotive battery protection panel using a plain-woven composite composed of glass fiber and polypropylene to reduce the weight of automobiles. However, excessive warpage occurs during the GF/PP compression molding process, which makes car assembly challenging. This study aims to develop a model that predicts the warpage during the compression molding process. Obtaining out-of-plane properties such as elastic or shear modulus, essential for predicting warpages, is tricky. Existing mechanical methods also have limitations in calculating these properties for woven composite materials. To address this issue, finite element analysis is conducted using representative volume elements (RVE) for woven composite materials. A warpage prediction model is developed based on the estimated physical properties of GF/PP composite materials obtained through representative volume elements. This model is expected to be used for reducing warpages in the compression molding process.

Stochastic Strength Analysis according to Initial Void Defects in Composite Materials (복합재 초기 공극 결함에 따른 횡하중 강도 확률론적 분석)

  • Seung-Min Ji;Sung-Wook Cho;S.S. Cheon
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.179-185
    • /
    • 2024
  • This study quantitatively evaluated and investigated the changes in transverse tensile strength of unidirectional fiber-reinforced composites with initial void defects using a Representative Volume Element (RVE) model. After calculating the appropriate sample size based on margin of error and confidence level for initial void defects, a sample group of 5000 RVE models with initial void defects was generated. Dimensional reduction and density-based clustering analysis were conducted on the sample group to assess similarity, confirming and verifying that the sample group was unbiased. The validated sample analysis results were represented using a Weibull distribution, allowing them to be applied to the reliability analysis of composite structures.

A Study on Representative Skyline Using Connected Component Clustering

  • Choi, Jong-Hyeok;Nasridinov, Aziz
    • Journal of Multimedia Information System
    • /
    • v.6 no.1
    • /
    • pp.37-42
    • /
    • 2019
  • Skyline queries are used in a variety of fields to make optimal decisions. However, as the volume of data and the dimension of the data increase, the number of skyline points increases with the amount of time it takes to discover them. Mainly, because the number of skylines is essential in many real-life applications, various studies have been proposed. However, previous researches have used the k-parameter methods such as top-k and k-means to discover representative skyline points (RSPs) from entire skyline point set, resulting in high query response time and reduced representativeness due to k dependency. To solve this problem, we propose a new Connected Component Clustering based Representative Skyline Query (3CRS) that can discover RSP quickly even in high-dimensional data through connected component clustering. 3CRS performs fast discovery and clustering of skylines through hash indexes and connected components and selects RSPs from each cluster. This paper proves the superiority of the proposed method by comparing it with representative skyline queries using k-means and DBSCAN with the real-world dataset.

Study of the mechanical properties and effects of particles for oxide dispersion strengthened Zircaloy-4 via a 3D representative volume element model

  • Kim, Dong-Hyun;Hong, Jong-Dae;Kim, Hyochan;Kim, Jaeyong;Kim, Hak-Sung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1549-1559
    • /
    • 2022
  • As an accident tolerant fuel (ATF) concept, oxide dispersion strengthened Zircaloy-4 (ODS Zry-4) cladding has been developed to enhance the mechanical properties of cladding using laser processing technology. In this study, a simulation technique was established to investigate the mechanical properties and effects of Y2O3 particles for the ODS Zry-4. A 3D representative volume element (RVE) model was developed considering the parameters of the size, shape, distribution and volume fraction (VF) of the Y2O3 particles. From the 3D RVE model, the Young's modulus, coefficient of thermal expansion (CTE) and creep strain rate of the ODS Zry-4 were effectively calculated. It was observed that the VF of Y2O3 particles had a significant effect on the aforementioned mechanical properties. In addition, the predicted properties of ODS Zry-4 were applied to a simulation model to investigate cladding deformation under a transient condition. The ODS Zry-4 cladding showed better performance, such as a delay in large deformation compared to Zry-4 cladding, which was also found experimentally. Accordingly, it is expected that the simulation approach developed here can be efficiently employed to predict more properties and to provide useful information with which to improve ODS Zry-4.

The mechanical analysis of 3-D flat board shaped braided composites (삼차원 평판형태 브레이딩 복합재료의 강성해석)

  • 김성준;강태진;정관수;윤재륜
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.114-117
    • /
    • 2002
  • To develop an effective geometric modeling is essential in order that precise material properties of the 3-D braided composite can be estimated. in this study RVE(representative volume element) which is the smallest volume element representing whole material properties is developed to estimate the mechanical properties of 3-D flat board shaped braided composite using volume averaging method.

  • PDF