• 제목/요약/키워드: Representative Unit Hydrograph

검색결과 26건 처리시간 0.022초

경사급변점을 이용한 기저유출분리와 Nash 모형에 의한 대표단위도 추정 (Separation of Baseflow using Antecedent Recession Requirement and Estimation of Representative Unit Hydrograph by the Nash model)

  • 정진영;강부식;차영기
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2007년도 학술발표회 논문집
    • /
    • pp.1762-1767
    • /
    • 2007
  • 일반적으로 유역의 대표단위도 산정에는 적용의 간편성을 이유로 수평직선분리법을 주로 사용하여 왔으며 이를 단기호우사상에 대한 모의에 적용해 왔다. 그러나 수평직선분리법에 의한 기저유량의 산출은 연구자의 주관성이 반영될 수 있는 가능성이 다분하며 총유출에 대한 기저유출의 기여가 상대적으로 크게 되는 장기유출모의에 대해서는 그 신뢰도가 떨어진다고 할 수 있다. 따라서 장기유출모의에서는 신뢰성있는 기저유출분리를 통한 합리적인 대표단위도를 유도하는 것이 필요하다. 또한 이 같은 문제점을 개선하기 위해 본 연구에서는 USGS(U.S GEOLOGICAL SURVEY)에서 개발한 기저유출분리 프로그램인 PART(stream flow Partitioning)를 이용하여 기저유출을 분리하고 Nash 모형을 이용하여 유역의 대표단위도를 유도했으며 검증을 위해 강우-유출 모형인 HEC-HMS에 유도된 대표단위도와 합성단위도를 적용하여 실제유출량에 대한 통계분석을 실시하였다. 그 결과 Nash모형의 매개변수를 n은 6.4, K는 0.33으로 산정할 수 있었고, PART에 의해 기저유출을 분리하여 유도된 단위도가 수평직선분리법에 의해 유도된 대표단위도 보다 장기유출모의에서 더 우수한 결과를 보였다. 또한 실측유출량과 모의유출량의 첨두값에 대한 오차도 PART에 의한 방법이 더 작음을 알 수 있었다.

  • PDF

유역특성에 의한 합성단위도의 유도에 관한 연구 (Derivation of the Synthetic Unit Hydrograph Based on the Watershed Characteristics)

  • 서승덕
    • 한국농공학회지
    • /
    • 제17권1호
    • /
    • pp.3642-3654
    • /
    • 1975
  • The purpose of this thesis is to derive a unit hydrograph which may be applied to the ungaged watershed area from the relations between directly measurable unitgraph properties such as peak discharge(qp), time to peak discharge (Tp), and lag time (Lg) and watershed characteristics such as river length(L) from the given station to the upstream limits of the watershed area in km, river length from station to centroid of gravity of the watershed area in km (Lca), and main stream slope in meter per km (S). Other procedure based on routing a time-area diagram through catchment storage named Instantaneous Unit Hydrograph(IUH). Dimensionless unitgraph also analysed in brief. The basic data (1969 to 1973) used in these studies are 9 recording level gages and rating curves, 41 rain gages and pluviographs, and 40 observed unitgraphs through the 9 sub watersheds in Nak Oong River basin. The results summarized in these studies are as follows; 1. Time in hour from start of rise to peak rate (Tp) generally occured at the position of 0.3Tb (time base of hydrograph) with some indication of higher values for larger watershed. The base flow is comparelatively higher than the other small watershed area. 2. Te losses from rainfall were divided into initial loss and continuing loss. Initial loss may be defined as that portion of storm rainfall which is intercepted by vegetation, held in deppression storage or infiltrated at a high rate early in the storm and continuing loss is defined as the loss which continues at a constant rate throughout the duration of the storm after the initial loss has been satisfied. Tis continuing loss approximates the nearly constant rate of infiltration (${\Phi}$-index method). The loss rate from this analysis was estimated 50 Per cent to the rainfall excess approximately during the surface runoff occured. 3. Stream slope seems approximate, as is usual, to consider the mainstreamonly, not giving any specific consideration to tributary. It is desirable to develop a single measure of slope that is representative of the who1e stream. The mean slope of channel increment in 1 meter per 200 meters and 1 meter per 1400 meters were defined at Gazang and Jindong respectively. It is considered that the slopes are low slightly in the light of other river studies. Flood concentration rate might slightly be low in the Nak Dong river basin. 4. It found that the watershed lag (Lg, hrs) could be expressed by Lg=0.253 (L.Lca)0.4171 The product L.Lca is a measure of the size and shape of the watershed. For the logarithms, the correlation coefficient for Lg was 0.97 which defined that Lg is closely related with the watershed characteristics, L and Lca. 5. Expression for basin might be expected to take form containing theslope as {{{{ { L}_{g }=0.545 {( { L. { L}_{ca } } over { SQRT {s} } ) }^{0.346 } }}}} For the logarithms, the correlation coefficient for Lg was 0.97 which defined that Lg is closely related with the basin characteristics too. It should be needed to take care of analysis which relating to the mean slopes 6. Peak discharge per unit area of unitgraph for standard duration tr, ㎥/sec/$\textrm{km}^2$, was given by qp=10-0.52-0.0184Lg with a indication of lower values for watershed contrary to the higher lag time. For the logarithms, the correlation coefficient qp was 0.998 which defined high sign ificance. The peak discharge of the unitgraph for an area could therefore be expected to take the from Qp=qp. A(㎥/sec). 7. Using the unitgraph parameter Lg, the base length of the unitgraph, in days, was adopted as {{{{ {T}_{b } =0.73+2.073( { { L}_{g } } over {24 } )}}}} with high significant correlation coefficient, 0.92. The constant of the above equation are fixed by the procedure used to separate base flow from direct runoff. 8. The width W75 of the unitgraph at discharge equal to 75 per cent of the peak discharge, in hours and the width W50 at discharge equal to 50 Per cent of the peak discharge in hours, can be estimated from {{{{ { W}_{75 }= { 1.61} over { { q}_{b } ^{1.05 } } }}}} and {{{{ { W}_{50 }= { 2.5} over { { q}_{b } ^{1.05 } } }}}} respectively. This provides supplementary guide for sketching the unitgraph. 9. Above equations define the three factors necessary to construct the unitgraph for duration tr. For the duration tR, the lag is LgR=Lg+0.2(tR-tr) and this modified lag, LgRis used in qp and Tb It the tr happens to be equal to or close to tR, further assume qpR=qp. 10. Triangular hydrograph is a dimensionless unitgraph prepared from the 40 unitgraphs. The equation is shown as {{{{ { q}_{p } = { K.A.Q} over { { T}_{p } } }}}} or {{{{ { q}_{p } = { 0.21A.Q} over { { T}_{p } } }}}} The constant 0.21 is defined to Nak Dong River basin. 11. The base length of the time-area diagram for the IUH routing is {{{{C=0.9 {( { L. { L}_{ca } } over { SQRT { s} } ) }^{1/3 } }}}}. Correlation coefficient for C was 0.983 which defined a high significance. The base length of the T-AD was set to equal the time from the midpoint of rain fall excess to the point of contraflexure. The constant K, derived in this studies is K=8.32+0.0213 {{{{ { L} over { SQRT { s} } }}}} with correlation coefficient, 0.964. 12. In the light of the results analysed in these studies, average errors in the peak discharge of the Synthetic unitgraph, Triangular unitgraph, and IUH were estimated as 2.2, 7.7 and 6.4 per cent respectively to the peak of observed average unitgraph. Each ordinate of the Synthetic unitgraph was approached closely to the observed one.

  • PDF

다중 강우사상을 반영한 DDS 알고리즘 기반 단일사상 강우-유출모형 매개변수 최적화 기법 (Multi parameter optimization framework of an event-based rainfall-runoff model with the use of multiple rainfall events based on DDS algorithm)

  • 유재웅;오세청;이백;권현한
    • 한국수자원학회논문집
    • /
    • 제55권11호
    • /
    • pp.887-901
    • /
    • 2022
  • 개별 강우-유출 사상을 대상으로 최적 매개변수를 산정하는 경우 사상별로 매개변수가 서로 다르며 물리적인 범위를 중심으로 변동성이 커 유역의 대표 매개변수를 결정하는데 어려움이 있다. 매개변수 추정 시 변동성 증가는 강우의 시공간적 변동성과 함께, 유역 내 일부 홍수량 산정지점 기준으로 강우-유출 자료만이 이용 가능하여 매개변수의 식별성(identifiability)이 매우 낮다. 추정되는 매개변수의 변동성 확대에 따른 문제점을 개선하기 위하여, 본 연구에서는 다수의 사상들을 동시에 고려한 매개변수 최적화 방법을 제안하였으며, NSE를 목적함수로 하여 매개변수를 최적화하였다. 개별 사상들을 통합적으로 고려하여 최적매개변수를 산정하는 경우 매개변수의 물리적인 특성을 유지함과 동시에 유역의 공동 매개변수 효율적으로 추정이 가능하였다. 개별 매개변수와 공통 매개변수 NSE의 차이가 최대 0.08 정도를 나타내며, 홍수량 재현 측면에서도 개별적으로 최적화를 수행한 경우와 유사하거나 보다 개선된 결과를 확인할 수 있었다.

유역특성을 이용한 설계홍수량 추정 (Design Flood Estimation by Basin Characteristics)

  • 박기범;김교식;한주헌;배상수
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.1172-1175
    • /
    • 2006
  • 설계홍수량의 산정에 있어 일반적으로 유역의 강우와 수위자료, 유출량 자료를 이용하여 강우-유출모형을 이용하여 산정하는 방법을 사용한다. 설계홍수량을 산정하는 데 있어 수문자료의 부족으로 인하여 유역에 대한 대표단위도의 결정이 어려워 유역에 대한 지형특성 자료들을 이용하여 추정된 변수들을 이용하여 모형에 적용시켜 산정하고 있다. 모형을 이용하여 설계홍수량의 산정을 하는 것에 있어 각각의 모형의 입력변수들이 지형인자로 인해 산정되는것이나 기왕에 산정된 설계홍수량 자료들이 근본적인 자료인 유역의 특성인자와 어떠한 관계를 가지며 미계측 유역이나 하천정비기본계획이 수립되지 않은 유역에 있어 설계홍수량을 추정하는 데 있어 상당한 어려움이 있는 것이 현실이다. 본 연구에서는 설계홍수량을 추정하는 데 있어 기왕에 하천정비 기본계획에 의해 산정된 설계홍수량과 지형인자들이 어떤 상관성을 가지고 있는 가에 대하여 분석하여 지형특성자료와 확률강우량 자료를 이용한 설계홍수량 추정방안에 대하여 연구하였다.

  • PDF

SCS-CN 산정을 위한 수치세부정밀토양도 활용과 괴산군 소수면 소유역의 물 유출량 평가 (Estimation of SCS Runoff Curve Number and Hydrograph by Using Highly Detailed Soil Map(1:5,000) in a Small Watershed, Sosu-myeon, Goesan-gun)

  • 홍석영;정강호;최철웅;장민원;김이현;손연규;하상건
    • 한국토양비료학회지
    • /
    • 제43권3호
    • /
    • pp.363-373
    • /
    • 2010
  • 수문 수자원 분야에서의 활용도를 제고하기 위하여 HSG 1995와 HSG 2006 두가지 분류법에 의한 우리나라 수문학적 토양유형의 분포에 대한 정보를 제공하고 이를 각각 충북 괴산군 소수면의 소유역의 수치세부정밀토양도 (1:5,000)에 적용하여 SCS-CN법을 이용한 유효 우량 산정과 유출곡선을 작성한 결과는 다음과 같다. 산악지에서 주로 침투능이 크고 하성 또는 해안평탄지로 가면서 낮아지는 경향을 보였다. HSG 1995 토양 유형 중 A군은 전체의 42.2%로 가장 넓게 분포하는 것으로 나타났고, B군 29.4%, C군 18.5%, D군 9.9% 순으로 나타났다. HSG 2006 토양유형은 A군 35.1%, B군 15.7%, C군 5.5%, D군 43.7%로 D군이 가장 넓게 분포하는 특징을 가진다. HSG 1995에서 A, B, C군으로 분류되었다가 HSG 2006에서 D군으로 분류된 토양 유형의 비율이 약 34.1%로 나타나 국립농업과학원에 의해 분류된 토양유형 중 D군의 면적이 크게 늘어난 것을 알 수 있었다. 충북 괴산군 소수면 소유역의 수치세부정밀토양도에 기반한 수문학적 토양유형 분포특성을 나타낸 것으로 산림과 밭으로 이용되는 토양의 유형이 A로 분류되는 것은 일치하는 경향을 보였다. HSG 2006의 토양유형은 유역에서 C 유형이 거의 없거나 적게 분포하고 HSG 1995에 비해 D 유형이 많게 나타난다. 미계측 유역에 대한 직접유출량 산정에 가장 많이 사용되는 SCS-CN법을 이용하여, 충북 괴산군 소수면 소유역에서 직접유출에 기여하는 유효우량을 산정하고 SCS 삼각단위도를 사용하여 첨두유량과 첨두시간을 계산한 결과는 다음과 같다. HSG 1995와 HSG 2006 수문학적 토양유형과 토지 이용별 CN값을 적용하여 유역의 CN값 (AMC II)을 구한 결과는 각각 54와 62로 나타났다. 이 때, 우량계가 설치된 지점의 강우자료를 평균하여 2004년~2005년 강우사상별로 정리하여 초기손실량 (I)이 총강우량 (P)보다 큰 경우를 제외한 강우사상을 선택하였고, 8월 16일에서 강우사상 전까지 내린 강수에 따라 선행수분조건 III으로 조정하여 유효우량 산출을 위한 CN값을 각각 73과 79로 하여 사용하였다. 강우사상에 대한 HSG 2006 기준의 유효우량이 56.67 mm로 HSG 1995 기준의 44.87 mm 보다 약 25% 많게 나타났다. 두 가지 수문학적 토양 유형 분류 기준에 따라 계산된 각 유효 우량에 대하여 수문곡선을 합성하여 실제 관측치와 비교한 결과 두 개 기준 모두 관측치와 유사한 변화 패턴을 보이고 있으나 실측치보다 감수부에서 급격하게 감소되는 특징을 나타냈다. 첨두유량은 HSG 1995 보다는 HSG 2006 기준을 사용할 때 관측치와 더 가까운 값을 나타내었다.

관측소간의 상관관계를 고려한 수위관측망 최적화 연구 (A Study on Optimal Stage Gauge Network Considering Correlation of Individual Stage Gauge Station)

  • 주홍준;김덕환;김정욱;최창현;한대건;이지호;김형수
    • 한국습지학회지
    • /
    • 제18권4호
    • /
    • pp.404-412
    • /
    • 2016
  • 본 연구는 제한된 인력과 비용을 활용하여 습지 지대에서의 일관되고 적절한 수위자료를 획득하기 위한 방안 수립을 목표로 하였다. 이를 위해 기존의 수위관측소 설치 기준에 입각한 상 하류간의 유기적인 상관관계를 파악하여 관측소간의 최적의 수위관측망의 선정 기술을 개발함으로서 유역을 대표할 수 있는 일관된 수위자료 획득에 중점을 두었다. 우선 기존에 습지 유역을 포함한 충주댐 유역을 대상으로 하천을 중심으로 설치되어 있는 수위관측소 현황을 파악한 후, 유출 특성을 나타내는 대표단위도를 산정한 후 확률밀도함수로 변환하였으며, 대상 유역내에서 엔트로피 이론에 의한 정보 전달량을 산정하였다. 마지막으로 각 관측소 간의 공간적인 상관관계를 분석하고, 정보 전달량과 각 관측소의 상관관계를 고려해 수위관측망을 최적화하였다. 즉, 정보 전달량으로 수위관측소의 개수에 따른 조합을 고려하되, 수위관측소간의 상관분석을 적용하여 수위관측소 설치위치와 개수에 대하여 최적화된 수위관측망을 제시할 수 있었다.