• Title/Summary/Keyword: Repository Concept

Search Result 94, Processing Time 0.021 seconds

Analysis of Case Studies on Experimental Research of Gas Generation in Foreign Countries for Low- and Intermediate-level Radioactive Waste Disposal (중.저준위 방사성폐기물 처분을 위한 국외 기체발생 실증실험시설 운영사례 분석)

  • Park, Jin-Beak;Lee, Sun-Joung;Kim, Suk-Hoon;Kim, Ju-Youl
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.3
    • /
    • pp.229-238
    • /
    • 2010
  • In order to acquire a realistic forecast for the lifetime and post-closure period of the LILW (Low- and Intermediate-Level Radioactive Waste) repository and to establish the overall management plan associated gas issues. it is essential to carry out the long-term experimental research in a similar condition to actual disposal environment. Regarding this, as a part of the following-up actions on a construction and operation license for the first stage of the LILW repository at Gyeongju city, a large-scale in-situ experiment is being planned. For securing basic data on the experiment, the experimental researches related to gas generation previously performed in foreign countries are reviewed in detail. Consequently, it is judged that data on the gas generation experiment in Finland could be practically applied as the benchmark for our large-scale in-situ experiment because the same disposal concept as the Korean repository is adopted and the experiment is performed in a scale large enough to allow the use of regular waste packages.

A-KRS GoldSim Model Verification: A Comparison Study of Performance Assessment Model (KAERI A-KRS 골드심 성능평가 모델 비교 검증 연구)

  • Lee, Youn-Myoung;Jeong, Jongtae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.2
    • /
    • pp.103-114
    • /
    • 2013
  • The Korea Atomic Energy Research Institute has developed a performance assessment model implementing the A-KRS concept, which was constructed with the GoldSim. In the A-KRS concept, spent nuclear fuel produced from pressurized-water-reactor operations would be pyroprocessed to reduce waste volume and radioactivity. The wastes to be disposed of in a geologic repository are comprised of metal and ceramic waste forms. In this study, results of simulations conducted to establish credibility and build confidence for the A-KRS model are presented. Specifically, release rates and breakthrough times simulated using the A-KRS model were compared to corresponding results from the U.S. NRC SOAR model. In addition, the A-KRS model results were compared to published release rates from the SKB repository performance assessment. This comparison of the A-KRS model results to other independent performance assessments is expected to form part of a suite of model verification and validation activities to provide confidence that the A-KRS model has been implemented appropriately.

Suggestion on Screening Concept of Radionuclides to be Considered for the Radiological Safety Assessment of the Domestic KBS-3 Type Geological Disposal Facility of High-level Radioactive Waste(HLW) (국내 KBS-3 방식 고준위방사성폐기물 심층처분시설 방사선학적 안전성 평가 대상 방사성핵종 목록 선정개념(안) 제언)

  • Sukhoon Kim;Donghyun Lee;Dong-Keuk Park
    • Journal of Radiation Industry
    • /
    • v.17 no.1
    • /
    • pp.45-59
    • /
    • 2023
  • The transport calculation for a wide variety of radionuclides contained in high-level radioactive waste, especially spent nuclear fuel, is computationally difficult, and input data collection for this also take a considerable amount of time. Accordingly, considering limited resources, it is possible to reduce the calculation time while minimizing impact on accuracy by including only radionuclides important to calculation result through applying some criteria among potential radiation source terms that may release into environment. In this paper, therefore, we reviewed and analyzed the screening process performed to select radionuclides to be considered in the safety assessment for the KBS-3 type repository in Sweden and Finland. In both countries, it was confirmed that a list of radionuclides was selected by comprehensively considering screening criteria such as radioactivity inventory, half-life, radiotoxicity, risk quotient, and transport properties, and etc. A comparison of radionuclides included in the radiological safety assessment in both countries suggests that most of nuclides are considered in common, and a few nuclides considered only in one country are due to differences in decay chain treatment or spent fuel types. As of now, since most of information on the disposal facility in Korea has not been determined, it is necessary to comprehensively model release and transport of all radionuclides considered in Sweden and Finland when performing the radiological safety assessment. Based on these results, we derived the screening concept of selecting a list of radionuclides to be considered in the radiological safety assessment for the domestic KBS-3 type geological disposal facility, and this result is expected to be used as technical basis for confirming conformity with the safety objective. In a more detailed evaluation reflecting domestic characteristics in the future, it would be desirable to consider only radionuclides selected in accordance with the screening procedure. However, further research should be conducted to determine the quantitative limit for each criteria.

A Correlation to Predict the Thermal Conductivity of Buffer and Backfill Material for a High-Level Waste Repository (고준위폐기물처분장 완충재 및 뒷채움재의 열전도도 예측을 위한 관계식)

  • Cho, Won-Jin;Lee, Jae-Owan;Kwon, Sang-Ki
    • Tunnel and Underground Space
    • /
    • v.20 no.4
    • /
    • pp.284-291
    • /
    • 2010
  • In the present design concept of a high-level waste repository, the bentonite and bentonite-sand mixture are considered as the buffer and backfill material. For the Kyungju bentonite which is a candidate material, the thermal conductivities of compacted bentonite and bentonite-sand mixture were measured. A correlation has been proposed to predict the thermal conductivity of the Kyungju bentonite and the bentonite-sand mixture as a function of the dry density, the water content and the sand fraction. The proposed correlation can predict the thermal conductivity with a difference less than 10% under the experimental conditions.

The Study of Class Library Design for Reusable Object-Oriented Software (객체지향 소프트웨어 재사용을 위한 클래스 라이브러리 설계에 관한 연구)

  • Lee, Hae-Won;Kim, Jin-Seok;Kim, Hye-Gyu;Ha, Su-Cheol
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.9
    • /
    • pp.2350-2364
    • /
    • 1999
  • In this paper, we propose a method of class library repository design for provide reuser the object-oriented C++ class component. To class library design, we started by studying the characteristics of a reusable component. We formally defined the reusable component model using an entity relationship model. This formal definition has been directly used as the database schema for storing the reusable component in a repository. The reusable class library may be considered a knowledge base for software reuse. Thus, we used that Enumerative classification of breakdown of knowledge based. And another used classification is clustering of based on class similarity. The class similarity composes member function similarity and member data similarity. Finally, we have designed class library for hierarchical inheritance mechanism of object-oriented concept Generalization, Specialization and Aggregation.

  • PDF

Uncertainty in Scenarios and Its Impact on Post Closure Long Term Safety Assessment in a Potential HLW Repository

  • Y.S. Hwang;Kim, S-K;Kang, C-H
    • Nuclear Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.108-120
    • /
    • 2003
  • In assessing the long term post closure radiological safety assessment of a potential HLW repository in Korea, three categories of uncertainties exist. The first one is the scenario uncertainty where series of different natural events are translated into written statements. The second one is the modeling uncertatinty where different mathematical models are applied for an identical scenario. The last one is the data uncertainty which can be expressed in terms of probabilistic density functions. In this analysis, three different scenarios are seleceted; a small well scenario, a radiolysis scenario, and a naturally discharged scenario. The MASCOT-K and the AMBER, probabilistic safety assessment codes based on connection of sub-modules and a compartment theory respectively, are applied to assess annual individual doses for a generic biosphere. Results illustrate that for a given scenario, predictions from two different codes fairly match well each other But the discrepancies for the different scenarios are significant. However, total doses are still well below the guideline of 2 mRem/yr. Detailed analyses with model and data uncertainties are underway to further assure the safety of a Korean reference dispsoal concept.

Improving classification of low-resource COVID-19 literature by using Named Entity Recognition

  • Lithgow-Serrano, Oscar;Cornelius, Joseph;Kanjirangat, Vani;Mendez-Cruz, Carlos-Francisco;Rinaldi, Fabio
    • Genomics & Informatics
    • /
    • v.19 no.3
    • /
    • pp.22.1-22.5
    • /
    • 2021
  • Automatic document classification for highly interrelated classes is a demanding task that becomes more challenging when there is little labeled data for training. Such is the case of the coronavirus disease 2019 (COVID-19) clinical repository-a repository of classified and translated academic articles related to COVID-19 and relevant to the clinical practice-where a 3-way classification scheme is being applied to COVID-19 literature. During the 7th Biomedical Linked Annotation Hackathon (BLAH7) hackathon, we performed experiments to explore the use of named-entity-recognition (NER) to improve the classification. We processed the literature with OntoGene's Biomedical Entity Recogniser (OGER) and used the resulting identified Named Entities (NE) and their links to major biological databases as extra input features for the classifier. We compared the results with a baseline model without the OGER extracted features. In these proof-of-concept experiments, we observed a clear gain on COVID-19 literature classification. In particular, NE's origin was useful to classify document types and NE's type for clinical specialties. Due to the limitations of the small dataset, we can only conclude that our results suggests that NER would benefit this classification task. In order to accurately estimate this benefit, further experiments with a larger dataset would be needed.

Heat Transfer Modeling by the Contact Condition and the Hole Distance for A-KRS Vertical Disposal (A-KRS 수직 처분공 접촉 조건 및 처분공 간의 거리에 따른 열전달 해석)

  • Kim, Dae-Young;Kim, Seung-Hyun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.3
    • /
    • pp.313-319
    • /
    • 2019
  • The A-KRS (Advanced Korean Reference Disposal System) is the disposal concept for pyroprocessed waste, which has been developed by the Korea Atomic Energy Research Institute. In this disposal concept, the amount of high-level radioactive waste is minimized using pyrochemical process, called pyroprocessing. The produced pyroprocessed waste is then solidified in the form of monazite ceramic. The final product of ceramic wastes will be disposed of in a deep geological repository. By the way, the decay heat is generated due to the radioactive decay of fission products and raises the temperature of buffer materials in the near field of radioactive waste repository. However, the buffer temperature must be kept below $100^{\circ}C$ according to the safety regulation. Usually, the temperature can be controlled by variation of the canister interdistance. However, KAERI has modelled thermal analysis under the boundary condition, where the waste canisters are in direct contact with each other. Therefore, a reliable temperature analysis in the disposal system may fail because of unknown thermal resistence values caused by the spatial gap between waste canisters. In the present work, we have performed thermal analyses considering the gap between heating elements and canisters at the beginning of canister loading into the radioactive waste repository. All thermal analyses were performed using the COMSOL software package.

Deep Borehole Disposal of Nuclear Wastes: Opportunities and Challenges

  • Schwartz, Franklin W.;Kim, Yongje;Chae, Byung-Gon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.4
    • /
    • pp.301-312
    • /
    • 2017
  • The concept of deep borehole disposal (DBD) for high-level nuclear wastes has been around for about 40 years. Now, the Department of Energy (DOE) in the United States (U.S.) is re-examining this concept through recent studies at Sandia National Laboratory and a field test. With DBD, nuclear waste will be emplaced in boreholes at depths of 3 to 5 km in crystalline basement rocks. Thinking is that these settings will provide nearly intact rock and fluid density stratification, which together should act as a robust geologic barrier, requiring only minimal performance from the engineered components. The Nuclear Waste Technical Review Board (NWTRB) has raised concerns that the deep subsurface is more complicated, leading to science, engineering, and safety issues. However, given time and resources, DBD will evolve substantially in the ability to drill deep holes and make measurements there. A leap forward in technology for drilling could lead to other exciting geological applications. Possible innovations might include deep robotic mining, deep energy production, or crustal sequestration of $CO_2$, and new ideas for nuclear waste disposal. Novel technologies could be explored by Korean geologists through simple proof-of-concept experiments and technology demonstrations.

Dry storage of spent nuclear fuel and high active waste in Germany-Current situation and technical aspects on inventories integrity for a prolonged storage time

  • Spykman, Gerold
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.313-317
    • /
    • 2018
  • Licenses for the storage of spent nuclear fuel (SNF) and vitrified highly active waste in casks under dry conditions are limited to 40 years and have to be renewed for prolonged storage periods. If such a license renewal has to be expected since as in accordance with the new site selection procedure a final repository for spent fuel in Germany will not be available before the year 2050. For transport and possible unloading and loading in new casks for final storage, the integrity and the maintenance of the geometry of the cask's inventory is essential because the SNF rod cladding and the cladding of the vitrified highly active waste are stipulated as a barrier in the storage concept. For SNF, the cladding integrity is ensured currently by limiting the hoop stress and hoop strain as well as the maximum temperature to certain values for a 40-year storage period. For a prolonged storage period, other cladding degradation mechanisms such as inner and outer oxide layer formation, hydrogen pick up, irradiation damages in cladding material crystal structure, helium production from alpha decay, and long-term fission gas release may become leading effects driving degradation mechanisms that have to be discussed.