• Title/Summary/Keyword: Replication protein A (RPA)

Search Result 12, Processing Time 0.022 seconds

Backbone Assignment of the N-terminal Domain of Human Replication Protein A 70 kDa

  • Lee, Sungjin;Park, Chin-Ju
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.20 no.4
    • /
    • pp.138-142
    • /
    • 2016
  • Replication Protein A (RPA) is the eukaryotic single-stranded DNA binding protein. It involves in DNA replication, repair, and damage response. Among three subunits, RPA70 has a protein-protein binding domain (RPA70N) at the N-terminal. It has known that the domain recruits several damage response proteins to the damaged site. Also, it is suggested that there are more candidates that interact with RPA70N. Even though several studies performed on the structural aspects of RPA70N and its ligand binding, the backbone assignments of RPA70N is not available in public. In this study, we present the backbone assignments of RPA70N.

Cloning of the Large Subunit of Replication Protein A (RPA) from Yeast Saccharomyces cerevisiae and Its DNA Binding Activity through Redox Potential

  • Jeong, Haeng-Soon;Jeong, In-Chel;Kim, Andre;Kang, Shin-Won;Kang, Ho-Sung;Kim, Yung-Jin;Lee, Suk-Hee;Park, Jang-Su
    • BMB Reports
    • /
    • v.35 no.2
    • /
    • pp.194-198
    • /
    • 2002
  • Eukaryotic replication protein A (RPA) is a single-stranded(ss) DNA binding protein with multiple functions in DNA replication, repair, and genetic recombination. The 70-kDa subunit of eukaryotic RPA contains a conserved four cysteine-type zinc-finger motif that has been implicated in the regulation of DNA replication and repair. Recently, we described a novel function for the zinc-finger motif in the regulation of human RPA's ssDNA binding activity through reduction-oxidation (redox). Here, we show that yeast RPA's ssDNA binding activity is regulated by redox potential through its RPA32 and/or RPA14 subunits. Yeast RPA requires a reducing agent, such as dithiothreitol (DTT), for its ssDNA binding activity. Also, under non-reducing conditions, its DNA binding activity decreases 20 fold. In contrast, the RPA 70 subunit does not require DTT for its DNA binding activity and is not affected by the redox condition. These results suggest that all three subunits are required for the regulation of RPA's DNA binding activity through redox potential.

NMR Study of Temperature-Dependent Single-Stranded DNA Binding Affinity of Human Replication Protein A

  • Kim, Min-Gyu;Shin, Tae-Hoan;Choi, Seo-Ree;Choi, Jae-Gyu;Lee, Joon-Hwa
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.20 no.3
    • /
    • pp.66-70
    • /
    • 2016
  • The replication protein A (RPA), is a heterotrimer with 70, 32 and 14 kDa subunits and plays a crucial role in DNA replication, recombination, and repair. The largest subunit, RPA70, binds to single-stranded DNA (ssDNA) and mediates interactions with many cellular and viral proteins. In this study, we performed nuclear magnetic resonance experiments on the complex of the DNA binding domain A of human RPA70 (RPA70A) with ssDNA, d(CCCCC), at various temperatures, to understand the temperature dependency of ssDNA binding affinity of RPA70A. Essential residues for ssDNA binding were conserved while less essential parts were changed with the temperature. Our results provide valuable insights into the molecular mechanism of the ssDNA binding of human RPA.

Backbone Dynamics and Model-Free Analysis of N-terminal Domain of Human Replication Protein A 70

  • Yoo, Sooji;Park, Chin-Ju
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.1
    • /
    • pp.18-25
    • /
    • 2018
  • Replication protein A (RPA) is an essential single-stranded DNA binding protein in DNA processing. It is known that N terminal domain of RPA70 (RPA70N) recruits various protein partners including damage-response proteins such as p53, ATRIP, Rad9, and MRE11. Although the common binding residues of RPA70N were revealed, dynamic properties of the protein are not studied yet. In this study, we measured $^{15}N$ relaxation parameters ($T_1,\;T_2$ and heteronuclear NOE) of human RPA70N and analyzed them using model-free analysis. Our data showed that the two loops near the binding site experience fast time scale motion while the binding site does not. It suggests that the protein binding surface of RPA70N is mostly rigid for minimizing entropy cost of binding and the loops can experience conformational changes.

Increased Anticancer Activity by the Surfated Funcoidan from Korean Brown Seaweeds (한국산 길조류에서 추출한 Fucoidan의 황산기에 따른 항암작용)

  • Park, Jang-Su;Kim, An Deu Re;Kim, Eun-Hui;Seo, Hong-Suk;Choe, Won-Cheol
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.2
    • /
    • pp.151-156
    • /
    • 2002
  • Fucoidan is a kind of polysaccharides in brown seaweeds. For the past years have been extensively studied due to their numerous biological activities : anticancer, anticoagulant, antithrombotic, anti-inflammatory and antiviral. In this study, we h ave extracted fucoidan from the Korean brown seaweeds and examined it's anticancer activities for employed SV40 DNA replication assay, RPA-ssDNA binding assay of replication protein A(RPA: known as human single-stranded DNA-binding protein essential for DNA rep-lication) and MCF7 cell growth inhibition assay. In addition to, we found that chemically sulfated fucoidan'santicancer activity is more higher than natural and desulfated fucoidan. It seem that fucoidan's sulfate group affect on DNA replication, cause of decrease RPA's DNA binding activity. These results suggests that sulfated fucoidan from Korean brown seaweeds have anticancer activity.

Species-specific variation of RPA-interacting protein (RIP) splice isoforms

  • Kim, Kwang-Soo;Lee, Eun-Ju;Lee, Seung-Hoon;Seo, Tae-Gun;Jang, Ik-Soon;Park, Jun-Soo;Lee, Je-Ho
    • BMB Reports
    • /
    • v.42 no.1
    • /
    • pp.22-27
    • /
    • 2009
  • Replication Protein A (RPA) is a single stranded DNA-binding protein involved in DNA metabolic activities such as replication, repair, and recombination. RPA-Interacting Protein $\alpha$ ($RIP{\alpha}$) was originally identified as a nuclear transporter of RPA in Xenopus. The human $RIP{\alpha}$ gene encodes several splice isoforms, of which $hRIP{\alpha}$ and $hRIP{\beta}$ are the major translation products in vivo. However, limited information is available about the alternative splicing of $RIP{\alpha}$ in eukaryotes, apart from that in humans. In this study, we examined the alternative splicing of RIP{\alpha} in the Drosophila, Xenopus, and mouse system. We showed that the number of splice isoforms of RIP{\alpha} was species-specific, and displayed a tendency to increase in higher eukaryotes. Moreover, a mouse ortholog of $hRIP{\alpha}$, $mRIP{\beta}2$, was not SUMOylated, in contrast to $hRIP{\alpha}$. Based on these results, we suggest that the $RIP{\alpha}$ gene gains more splice isoforms and additional modifications after molecular evolution.

NMR Study of the pH Effect on the DNA Binding Affinity of Human RPA

  • Lee, Min-Woo;Choi, Ju-Hyeok;Choi, Jae-Gyu;Lee, Ae-Ree;Lee, Joon-Hwa
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.20 no.3
    • /
    • pp.71-75
    • /
    • 2016
  • The replication protein A (RPA) plays a crucial role in DNA replication, recombination, and repair. RPA consists of 70, 32 and 14 kDa subunits and has high single-stranded DNA (ssDNA) binding affinity. The largest subunit, RPA70, mainly contributes to bind to ssDNA as well as interact with many cellular and viral proteins. In this study, we performed nuclear magnetic resonance experiments on the complex of the DNA binding domain A of human RPA70 (RPA70A) with ssDNA, d(CCCCC), at various pH, to understand the effect of pH on the ssDNA binding of RPA70A. The chemical shift perturbations of binding residues were most significant at pH 6.5 and they reduced with pH increment. This study provides valuable insights into the molecular mechanism of the ssDNA binding of human RPA.

α-Kleisin subunit of cohesin preserves the genome integrity of embryonic stem cells

  • Seobin Yoon;Eui-Hwan Choi;Seo Jung Park;Keun Pil Kim
    • BMB Reports
    • /
    • v.56 no.2
    • /
    • pp.108-113
    • /
    • 2023
  • Cohesin is a ring-shaped protein complex that comprises the SMC1, SMC3, and α-kleisin proteins, STAG1/2/3 subunits, and auxiliary factors. Cohesin participates in chromatin remodeling, chromosome segregation, DNA replication, and gene expression regulation during the cell cycle. Mitosis-specific α-kleisin factor RAD21 and meiosis-specific α-kleisin factor REC8 are expressed in embryonic stem cells (ESCs) to maintain pluripotency. Here, we demonstrated that RAD21 and REC8 were involved in maintaining genomic stability and modulating chromatin modification in murine ESCs. When the kleisin subunits were depleted, DNA repair genes were downregulated, thereby reducing cell viability and causing replication protein A (RPA) accumulation. This finding suggested that the repair of exposed single-stranded DNA was inefficient. Furthermore, the depletion of kleisin subunits induced DNA hypermethylation by upregulating DNA methylation proteins. Thus, we proposed that the cohesin complex plays two distinct roles in chromatin remodeling and genomic integrity to ensure the maintenance of pluripotency in ESCs.