• Title/Summary/Keyword: Replication protein A

Search Result 328, Processing Time 0.027 seconds

In vitro Evidence that Purified Yeast Rad27 and Dna2 are not Stably Associated with Each Other Suggests that an Additional Protein(s) is Required for a Complex Formation

  • Bae, Sung-Ho;Seo, Yeon-Soo
    • BMB Reports
    • /
    • v.33 no.2
    • /
    • pp.155-161
    • /
    • 2000
  • The saccharomyces cerevisiae Rad27, a structure-specific endonuclease for the okazaski fragment maturation has been known to interact genetically and biochemically with Dna2, an essential enzyme for DNA replication. In an attempt to define the significance of the interaction between the two enzymes, we expressed and purified both Dna2 and Rad27 proteins. In this report, Rad27 could not form a complex with Dna2 in the three different analyses. The analyses included glycerol gradient sedimentation, protein-column chromatography, and coinfection of baculoviruses followed by affinity purification. This is in striking contrast to the previous results that used crude extracts. These results suggest that the interaction between the two proteins is not sufficiently stable or indirect, and thus requires an additional protein(s) in order for Rad27 and Dna2 to form a stable physical complex. This result is consistent with our genetic findings that Schizosaccharomyces pombe Dna2 is capable of interacting with several proteins that include two subunits of polymerase $\delta$, DNA ligase I, as well as Fen-1. In addition, we found that the N-terminal modification of Rad27 abolished its enzymatic activity. Thus, as suspected, we found that on the basis of the structure determination, N-terminal methionine indeed plays an important role in the nucleolytic cleavage reaction.

  • PDF

Flock House Virus RNA1 with a Long Heterologous Sequence at the 3'-end Can Replicate in Mammalian Cells and Mediate Reporter Gene Expression

  • Kim, Doyeong;Cho, Tae-Ju
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.11
    • /
    • pp.1790-1798
    • /
    • 2019
  • Flock House virus (FHV), an insect RNA virus, has a bipartite genome. FHV RNA1 can be packaged in turnip yellow mosaic virus (TYMV) as long as the FHV RNA has a TYMV sequence at the 3'-end. The encapsidated FHV RNA1 has four additional nucleotides at the 5'-end. We investigated whether the recombinant FHV RNA1 could replicate in mammalian cells. To address this issue, we prepared in vitro transcribed FHV RNAs that mimicked the recombinant FHV RNA1, and introduced them into baby hamster kidney (BHK) cells. The result showed that the recombinant FHV RNA1 was capable of replication. An eGFP gene inserted into the frame with B2 gene of the FHV RNA1 was also successfully expressed. We also observed that eGFP expression at the protein level was strong at 28℃ but weak at 30℃. Sequence analysis showed that the 3'-ends of the RNA1 and RNA3 replication products were identical to those of the authentic FHV RNAs. This indicates that FHV replicase correctly recognized an internally-located replication signal. In contrast, the 5'-ends of recombinant FHV RNA1 frequently had deletions, indicating random initiation of (+)-strand synthesis.

Investigation of function and regulation of the YB-1 cellular factor in HIV replication

  • Jung, Yu-Mi;Yu, Kyung-Lee;Park, Seong-Hyun;Lee, Seong-Deok;Kim, Min-Jeong;You, Ji-Chang
    • BMB Reports
    • /
    • v.51 no.6
    • /
    • pp.290-295
    • /
    • 2018
  • Y-box binding protein 1 (YB-1) is a member of the cold-shock domain (CSD) protein superfamily. It participates in a wide variety of cellular events, including transcription, RNA splicing, translation, DNA repair, drug resistance, and stress responses. We investigated putative functions of YB-1 in HIV-1 replication. Functional studies using overexpression or knockdown of YB-1 in conjunction with transfection of proviral DNA showed that YB-1 enhances virus production. We found YB-1 regulates HIV-1 production by stimulating viral transcription using HIV-1 LTR sequence U3RU5 with Luciferase assay. We also identified a specific region from amino acids 1 to 324 of YB-1 as necessary for the participation of the protein in the production of virions.

Terminal Protein-specific scFv Production by Phage Display (Phage Display 방법을 이용한 B형 간염 바이러스의 Terminal Protein 특이 scFv 항체 생산)

  • Lee, Myung-Shin;Kwon, Myung-Hee;Park, Sun;Shin, Ho-Joon;Kim, Hyung-Il
    • IMMUNE NETWORK
    • /
    • v.3 no.2
    • /
    • pp.126-135
    • /
    • 2003
  • Background: One of the important factors in the prognosis of chronic hepatitis B patient is the degree of replication of hepatitis B virus (HBV). It has been known that HBV DNA polymerase plays the essential role in the replication of HBV. HBV DNA polymerase is composed of four domains, TP (Terminal protein), spacer, RT (Reverse transcriptase) and RNaseH. Among these domains, tyrosine, the $65^{th}$ residue of TP is an important residue in protein-priming reaction that initiates reverse transcription. If monoclonal antibody that recognizes around tyrosine residue were selected, it could be applied to further study of HBV replication. Methods: To produce TP-specific scFv (single-chain Fv) by phage display, mice were immunized using synthetic TP-peptide contains $57{\sim}80^{th}$ amino acid residues of TP domain. After isolation of mRNA of heavy-variable region ($V_H$) and light-chain variable region ($V_L$) from the spleen of the immunized mouse, DNA of $V_H$ and $V_L$ were obtained by RT-PCR and joined by a DNA linker encoding peptide (Gly4Ser)3 as a scFv DNA fragments. ScFv DNA fragments were cloned into a phagemid vector. scFv was expressed in E.coli TG1 as a fusion protein with E tag and phage gIII. To select the scFv that has specific affinity to TP-peptide from the phage-antibody library, we used two cycles of panning and colony lift assay. Results: The TP-peptide-specific scFv was isolated by selection process using TP-peptide as an antigen. Selected scFv had 30 kDa of protein size and its nucleotide sequences were analyzed. Indirect- and competitive-ELISA revealed that the selected scFv specifically recognized both TP-peptide and the HBV DNA polymerase. Conclusion: The scFv that recognizes the TP domain of the HBV DNA polymerase was isolated by phage display.

Expression of E. coli LacZ Gene in Bovine Morular or Blastocysts after Microinjection of Retrovirus Vector-Producing Cells into the Perivitelline Space of One-to Four-Cell Embryos (체외생산된 우유정란으로부터 형질전환우의 생산성 제고를 위한 Retrovirus Vector System의 이용성 검토)

  • 김태완;박세필
    • Korean Journal of Animal Reproduction
    • /
    • v.19 no.1
    • /
    • pp.35-41
    • /
    • 1995
  • In this study, we have tested whether the retrovirus vector system is applicable in transgenic cattle production. To overcome low infectivity of currently available retrovirus vector system we have directly microinjected retrovirus-producing cells into the perivitelline space of the day 1.5 embryos. The virus-producing cell line was designed to release replication-defective retrovirus encapsidated with Gibbon ape leukemia virus (GaLV) envelope protein. E. coli LacZ gene was used as a marker gene to facilitate evaluation of the transgene expression and X-gal staining at morula or blastocyst stage resulted in expression of E. coli LacZ gene The results in these experiments were summarized as follows : 1. The lowest concentration of polybrene necessary for efficient virus infection was Sf' g/ml. 2. Development rate from day 1.5 embryos microinjected with virus-producing cells to the morulae /blastocysts was 29%. 3. 21% of the morulae /blastocysts were LacZ+. 4. There was no evidence that the retrovirus-producing cells used in this study produced replication-competent retrovirus.

  • PDF

Peste des petits ruminants virus infection induces endoplasmic reticulum stress and apoptosis via IRE1-XBP1 and IRE1-JNK signaling pathways

  • Shuyi Yuan;Yanfen Liu;Yun Mu;Yongshen Kuang;Shaohong Chen;Yun-Tao Zhao;You Liu
    • Journal of Veterinary Science
    • /
    • v.25 no.2
    • /
    • pp.21.1-21.15
    • /
    • 2024
  • Background: Peste des petits ruminants (PPR) is a contagious and fatal disease of sheep and goats. PPR virus (PPRV) infection induces endoplasmic reticulum (ER) stress-mediated unfolded protein response (UPR). The activation of UPR signaling pathways and their impact on apoptosis and virus replication remains controversial. Objectives: To investigate the role of PPRV-induced ER stress and the IRE1-XBP1 and IRE1-JNK pathways and their impact on apoptosis and virus replication. Methods: The cell viability and virus replication were assessed by 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay, immunofluorescence assay, and Western blot. The expression of ER stress biomarker GRP78, IRE1, and its downstream molecules, PPRV-N protein, and apoptosis-related proteins was detected by Western blot and quantitative reverse transcription-polymerase chain reaction, respectively. 4-Phenylbutyric acid (4-PBA) and STF-083010 were respectively used to inhibit ER stress and IRE1 signaling pathway. Results: The expression of GRP78, IRE1α, p-IRE1α, XBP1s, JNK, p-JNK, caspase-3, caspase-9, Bax and PPRV-N were significantly up-regulated in PPRV-infected cells, the expression of Bcl-2 was significantly down-regulated. Due to 4-PBA treatment, the expression of GRP78, p-IRE1α, XBP1s, p-JNK, caspase-3, caspase-9, Bax, and PPRV-N were significantly downregulated, the expression of Bcl-2 was significantly up-regulated. Moreover, in PPRV-infected cells, the expression of p-IRE1α, p-JNK, Bax, and PPRV-N was significantly decreased, and the expression of Bcl-2 was increased in the presence of STF-083010. Conclusions: PPRV infection induces ER stress and IRE1 activation, resulting in apoptosis and enhancement of virus replication through IRE1-XBP1s and IRE1-JNK pathways.

항바이러스제가 단백질의 구조적 거동에 미치는 영향에 대한 유한요소법 기반 분석

  • Yun, Gi-Seok;Kim, Jae-Hun
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.212-216
    • /
    • 2015
  • Oseltamivir, also known as Tamifu, is an inhibitor of neuraminidase protein which plays an essential role in proliferation and replication of influenza virus. Binding to the active site of neuraminidase, the oseltamivir prevents the protein from enzyme reaction. Conformational change of the protein(neuraminidase) should be accompanied by the enzyme reaction, but the drug inhibits the protein to deform. In this study, we examine the influence of oseltamivir on protein's conformational change in the structural and mechanical point of view. Finite element analysis of the protein can be an useful approach to investigate the influence of oseltamivir on the deformation of a protein. We suggest the finite element based protein model, and then perform the linear static analysis with the displacement loading condition based on the first two largest motion which can be obtained from the normal mode analysis. The results show that it takes more energy to change shape of the protein with an oseltamivir attached than the protein without an oseltamivir.

  • PDF

Prophylactic and Therapeutic Applications of Genetic Materials Carrying Viral Apoptotic Function

  • Yang Joo-Sung
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.118-120
    • /
    • 2002
  • Genetic materials including DNA plasmid are effective delivery vehicle to express interesting gene efficiently and safely not to generate replication competent virus. Moreover, it has advantages to design a better vector and to simplify manufacturing and storage condition. To understand a possible pathogenic mechanism by a flavivirus, West Nile virus (WNV), WNV genome sequence was aligned to other pathogenic viral genome. Interestingly, WNV capsid (Cp) amino acid sequence has some homology to HIV-l Vpr protein. These proteins induce apoptosis in human cell lines as well as in vivo and cell cycle arrest. Therefore, DNA plasmid carrying apoptosis-inducing and cell cycle arresting viral proteins including a HIV-1 Vpr and a WNV Cp protein can be useful for anti-cancer therapeutic applications. This WNV Cp protein is an early expressed protein which can be a reasonable target antigen (Ag) for vaccine design. Immunization of a DNA construct encoding WNV Cp protein induces a strong Ag-specific humoral and Th1-type immune responses in animal. Therefore, DNA plasmid encoding apoptotic viral proteins can be useful tool for therapeutic and prophylactic applications.

  • PDF

Antiviral activity of sertindole, raloxifene and ibutamoren against transcription and replication-competent Ebola virus-like particles

  • Yoon, Yi-Seul;Jang, Yejin;Hoenen, Thomas;Shin, Heegwon;Lee, Younghoon;Kim, Meehyein
    • BMB Reports
    • /
    • v.53 no.3
    • /
    • pp.166-171
    • /
    • 2020
  • A chemical library comprising 2,354 drug-like compounds was screened using a transcription and replication-competent viruslike particle (trVLP) system implementing the whole Ebola virus (EBOV) life cycle. Dose-dependent inhibition of Ebola trVLP replication was induced by 15 hit compounds, which primarily target different types of G protein-coupled receptors (GPCRs). Based on the chemical structure, the compounds were divided into three groups, diphenylmethane derivatives, promazine derivatives and chemicals with no conserved skeletons. The third group included sertindole, raloxifene, and ibutamoren showing prominent antiviral effects in cells. They downregulated the expression of viral proteins, including the VP40 matrix protein and the envelope glycoprotein. They also reduced the amount of EBOV-derived tetracistronic minigenome RNA incorporated into progeny trVLPs in the culture supernatant. Particularly, ibutamoren, which is a known agonist of growth hormone secretagogue receptor (GHSR), showed the most promising antiviral activity with a 50% effective concentration of 0.2 μM, a 50% cytotoxic concentration of 42.4 μM, and a selectivity index of 222.8. Here, we suggest a strategy for development of anti-EBOV therapeutics by adopting GHSR agonists as hit compounds.

ORI2 is a Strong Inhibitor of Coxsackievirus B4 Replication (오리방풀로부터 분리된 ORI2의 췌장염 유발 콕사키바이러스B4 증식억제)

  • Lim, Byung-Kwan;Jo, Soyeon;Kim, Jin Hee
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.4
    • /
    • pp.282-287
    • /
    • 2014
  • The ORI2 (3-[3,4-dihydroxyphenyl]acrylic acid 1-[3,4-dihydroxyphenyl]-2-methoxycarbonylethyl ester) was purified from the extract of Isodon excisus. We confirmed the antiviral effect of ORI2 in a coxsackievirus-induced pancreatitis model. Coxsackievirus B4 (CVB4) is a common cause of pancreatitis and may be reason of the type-1 diabetes. Anti-enteroviral compounds were screened by HeLa cell survival assay. Purified natural compounds were added to HeLa cells cultured 96-well plates after $10^4PFU/ml$ CVB4 pre-incubation for 30 min. ORI2 significantly improved HeLa cell survival in a dose-dependent manner. In addition, ORI2 (1 mM) treatment was dramatically decreased virus protease 2A induced eIF4G-I cleavage and viral VP1 capsid protein production. HeLa cell virus titers and viral RNA replication were significantly decreased in ORI2-treatment in a dose dependent manner (1 mM~0.001 mM). These results demonstrate that ORI2 has a strong antiviral effect. It was significantly decreased virus replication. ORI2 may be developed as a potential therapeutic agent for CVB4.