• Title/Summary/Keyword: Replica molding

Search Result 23, Processing Time 0.026 seconds

A Replica Molding Technique for Fabricating Liquid Crystal Displays with Wide Viewing Characteristics

  • Kim, Yeun-Tae;Hong, Jong-Ho;Choi, Yoon-Seuk;Lee, Sin-Doo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.371-373
    • /
    • 2005
  • We demonstrated a replica molding technique for producing a self-formed multidomain structure displays (LCDs). The multidomain structure was naturally obtained on a replica mold film having periodic patterns which have two dimensional microgrooves. It was found that with the axially symmetric multidomain structure along the microgrooves exhibits excellent viewing characteristics.

  • PDF

Fabrication of a Dual-Gap Substrate Using the Replica-molding Technique for Transflective Liquid Crystal Displays

  • Kim, Yeun-Tae;Hong, Jong-Ho;Cho, Seong-Min;Lee, Sin-Doo
    • Journal of Information Display
    • /
    • v.10 no.2
    • /
    • pp.68-71
    • /
    • 2009
  • A replica-molding method of fabricating a dual-gap substrate for transflective liquid crystal (LC) displays is demonstrated. The dual-gap substrate provides homeotropic alignment for the LC molecules without any surface treatment and embedded bilevel microstructure on one of the two surfaces to maintain different cell gaps between the transmissive and reflective subpixels. The proposed transflective LC cell shows no electro-optic disparity between two subpixels and reduces the panel thickness and weight by 30% compared to the conventional transflective LC cell, which has two glass substrates.

A Study on Resin Flow to Make a Replica Using a Silicone Mold

  • Bae, Kum-Soo;Rhee, Sang-Yong;Kim, Young-Baek
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.94-99
    • /
    • 2008
  • The replica of silicone mold which can produce the test samples and the market-displayable products without making expensive metallic patterns is advantageous because it incurs less cost than the ordinary method that manufactures the products from the metallic patterns. However, the production of the products using silicone mold should require a technician with professional knowledge about the metallic patterns every time. Thus we tried to judge whether a forming analysis software for iron molding can be applied to silicon molding in this paper. In other words, this paper suggests a method to use a computer simulator from the designing step of the silicone mold, which is the most important part in making replica using simple silicone molds to the step of pouring the cast. The paper shows that if the know-how of a professional worker is provided in advance, an amateur worker can easily produce silicone molds of the best quality, the defective rate of the products will be decreased, and the replica will have a more complete status. By doing so, we suggested a possibility for reducing the delivery time at the production sites and for improving the product quality.

Fabrication of a Micro-riblet Shark Skin-like Surface using a WEDM Process (와이어 방전가공을 이용한 상어 표피 모사 리블렛 표면 제작)

  • Park, Young Whan;Kim, Tae Wan
    • Tribology and Lubricants
    • /
    • v.32 no.6
    • /
    • pp.201-206
    • /
    • 2016
  • In this study, we attempt to produce a semi-elliptical riblet with a shark skin-like surface using wire electrical discharge machining (WEDM) and micro molding techniques. Our design for the production of the semi-elliptical mold includes an electrode, a winding roller, and a guide on the WEDM system. A replication mold with negative riblets is machined using WEDM, and a shark skin inspired surface with positive riblets is fabricated using a micro molding technique. For a comparison with the original shark skin, a shark skin replica is also produced using the micro molding technique directly from a shark skin template. Droplet contact angles on a flat surface, the shark skin replica, and the epoxy resin-based micro riblet shark skin-like surface are evaluated. The effect of a Teflon coating on the contact angles for the three different surfaces is also investigated. The results show the micro riblet with a shark skin-like surface has a similar contact angle as the shark skin replica, which means that the simplified riblet shark skin surface strongly influences the performance of wettability. This study confirms the effectiveness of using the WEDM method to prepare hydrophobic surfaces with diverse surface patterns.

Precise Replica Technology Study for Fine Optical Waveguide Device (미세 광소자용 도파로 정밀 복제기술 연구)

  • Oh S.H.;Kim C.S.;Jeong M.Y.;Boo J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1493-1496
    • /
    • 2005
  • In this paper, we describe a simple, precise and low cost method of fabricating PDMS stamp for UV embossing. It is important to improve the replication quality of stamp because the accuracy of fabricated structure is related to that of the stamp in UV embossing. The PDMS stamp has been fabricated by the replica molding technology with ultrasonic vibration to eliminate micro-air bubbles during the fabrication process of PDMS stamp. Also, this fabrication to use ultrasonic vibration promotes PDMS solution to fill into micro channel and edge parts. We report the fabrication of an optical core using UV embossing with fabricated PDMS stamp. This fabricated core is $7\;\mu{m}\;at\;depth,\;6\;\mu{m}\;at\;width.\;This\;measured\;value\;has\;the\;difference\;below\;1\;\mu{m}$compared to the original stamp. The surface roughness of core is about 14 nm root mean square. This is satisfactory value to use low-loss optical waveguide. Our successful demonstration of precise replica technology presents an alternative approach for the stamp of UV embossing.

  • PDF

Fabrication Process of a Nano-precision Polydimethylsiloxane Replica using Vacuum Pressure-Difference Technique (진공 압력차이법에 의한 나노 정밀도를 가지는 폴리디메틸실록산 형상복제)

  • 박상후;임태우;양동열;공홍진;이광섭
    • Polymer(Korea)
    • /
    • v.28 no.4
    • /
    • pp.305-313
    • /
    • 2004
  • A vacuum pressure-difference technique for making a nano-precision replica is investigated for various applications. Master patterns for replication were fabricated using a nano-replication printing (nRP) process. In the nRP process, any picture and pattern can be replicated from a bitmap figure file in the range of several micrometers with resolution of 200nm. A liquid-state monomer is solidified by two-photon absorption (TPA) induced by a femto-second laser according to a voxel matrix scanning. After polymerization, the remaining monomers were removed simply by using ethanol droplets. And then, a gold metal layer of about 30nm thickness was deposited on the fabricated master patterns prior to polydimethylsiloxane molding for preventing bonding between the master and the polydimethylsiloxane mold. A few gold particles attached on the polydimethylsiloxane stamp during detaching process were removed by a gold selecting etchant. After fabricating the polydimethylsiloxane mold, a nano-precision polydimethylsiloxane replica was reproduced. More precise replica was produced by the vacuum pressure-difference technique that is proposed in this paper. Through this study, direct patterning on a glass plate, replicating a polydimethylsiloxane mold, and reproducing polydimethylsiloxane replica are demonstrated with a vacuum pressure-difference technique for various micro/nano-applications.

A Study on the Fabrication of Sub-Micro Mold for PDMS Replica Molding Process by Using Hyperfine Mechanochemical Machining Technique (기계화학적 극미세 가공기술을 이용한 PDMS 복제몰딩 공정용 서브마이크로 몰드 제작에 관한 연구)

  • 윤성원;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.351-354
    • /
    • 2004
  • This work presents a simple and cost-effective approach for maskless fabrication of positive-tone silicon master for the replica molding of hyperfine elastomeric channel. Positive-tone silicon masters were fabricated by a maskless fabrication technique using the combination of nanoscratch by Nanoindenter ⓡ XP and XOH wet etching. Grooves were machined on a silicon surface coated with native oxide by ductile-regime nanoscratch, and they were etched in a 20 wt% KOH solution. After the KOH etching process, positive-tone structures resulted because of the etch-mask effect of the amorphous oxide layer generated by nanoscratch. The size and shape of the positive-tone structures were controlled by varying the etching time (5, 15, 18, 20, 25, 30 min) and the normal loads (1, 5 mN) during nanoscratch. Moreover, the effects of the Berkovich tip alignment (0, 45$^{\circ}$) on the deformation behavior and etching characteristic of silicon material were investigated.

  • PDF

Ductile-Regime Nanopatterning on Pyrex 7740 Glass Surface and Its Application to the Fabrication of Positive-tone PDMS Stamp for Microcontact Printing (${\mu}CP$) (미소접촉인쇄 공정용 철형 PDMS 스템프 제작을 위한 Pyrex 7740 glass 표면의 연성영역 나노패터닝)

  • Kim H. I.;Youn S. W.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.40-43
    • /
    • 2004
  • Stamps for microcontact processing are fabricated by casting elastomer such as PDMS on a master with a negative of the desired pattern. After curing, the PDMS stamp is peeled away from the master and exposed to a solution of ink and then dried. Transfer of the ink from the PDMS stamp to the substrate occurs during a brief contact between stamp and substrate. Generally, negative-tone masters, which are used for making positive-tone PDMS stamps, are fabricated by using photolithographic technique. The shortcomings of photolithography are a relative high-cost process and require extensive processing time and heavy capital investment to build and maintain the fabrication facilities. The goal of this study is to fabricate a negative-tone master by using Nano-indenter based patterning technique. Various sizes of V-grooves and U-groove were fabricated by using the combination of nanoscratch and HF isotropic etching technique. An achieved negative-tone structure was used as a master in the PDMS replica molding process to fabricate a positive-tone PDMS stamp.

  • PDF

PDMS Stamp Fabrication for Photonic Crystal Waveguides (광자결정 도파로 성형용 PDMS 스탬프 제작)

  • Oh, Seung-Hun;Choi, Du-Seon;Kim, Chang-Seok;Jeong, Myung-Yung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.153-158
    • /
    • 2007
  • Recently nano imprint lithography to fabricate photonic crystal on polymer is preferred because of its simplicity and short process time and ease of precise manufacturing. But, the technique requires the precise mold as an imprinting tool for good replication. These molds are made of the silicon, nickel and quartz. But this is not desirable due to complex fabrication process, high cost. So, we describe a simple, precise and low cost method of fabricating PDMS stamp to make the photonic crystals. In order to fabricate the PDMS mold, we make the original pattern with designed hole array by finding the optimal electron beam writing condition. And then, we have tried to fabricate PDMS mold by the replica molding with ultrasonic vibration and pressure system. We have used the cleaning process to solve the detaching problem on the interface. Using these methods, we acquired the PDMS mold for photonic crystals with characteristics of a good replication. And the accuracy of replication shows below 1% in 440nm at diameter and in 610nm at lattice constant by dimensional analysis by SEM and AFM.