• Title/Summary/Keyword: Replacement Ratio of Aggregate

Search Result 308, Processing Time 0.023 seconds

A Study on the Durabilities of High Volume Coal Ash Concrete by the Kinds of Coal Ash (석탄회 종류에 따른 석탄회를 대량 사용한 콘크리트의 내구특성에 관한 연구)

  • Choi, Se-Jin;Kim, Moo-Han
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.3
    • /
    • pp.73-78
    • /
    • 2009
  • Coal ash is a by-product of the combustion of pulverized coal, and much of this is dumped in landfills. The disposal of coal ash is one of the major issues for environmental problems. In this paper, the effects of the kinds and replacement ratio of coal ash on the durabilities of concrete mixtures are investigated. Fine aggregate was replaced with coal ash(fly ash and bottom ash) in five different ratios, of 0%, 10%, 20%, 35%, and 50% by volume. Test results indicated that the compressive strength increased with the increase in fly ash percentage. The loss of compressive strength of bottom ash concrete mixes after immersion in sulphuric acid solution was less than in the control mix(BA0). In addition, the carbonation depth of fly ash concrete mixes was lower than the control mix(FA0).

Evaluation for Characteristics of Coal-mine Waste Concrete (석탄폐석을 이용한 콘크리트의 특성 연구)

  • 김광우;도영수;이상범
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.2
    • /
    • pp.132-139
    • /
    • 2001
  • This study deals with coal-mine waste (CMW) for use in concrete as a replacement of normal aggregates. The CMW was collected from Sabuk region. Ganwon-do. Fine and coarse aggregates from CMW were prepared by using a crusher and separating debris with #4 sieve. CMW aggregates showed good physical and mechanical properties with having specific gravity over 2.65, absorption less than 1%, and abrasion ratio below 20%. However, particle shape of CMW was poor because of non-isotropic nature of matrix which cause particles to be long or flat. Since irregular particles caused a poor workability, to make workability better, a 1/4 of coarse aggregate was replaced with normal aggregate together with a superplasticizer. Compressive strength and other mechanical properties of CMW concrete were very good. Color of the concrete was darker than normal concrete due to black color of CMW. In conclusion, characteristics of CMW concrete was acceptable for use as a structural concrete material.

  • PDF

Mechanical Behavior of Coal Mine Waste Concretes (석탄폐석을 이용한 콘크리트의 역학적 거동)

  • Lee, Bong-Hak
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.105-112
    • /
    • 1996
  • This paper presents coal mine waste (CMW) for use in concrete manufacture as a replacement of normal aggregates. The CMW in this study was collected from Sabook, Jungson-kun, Kangwon-do. Fine and coarse asggregates from CMW were prepared by crushing it in a jaw crusher and separating debris with #4 sieve. CMW aggregates showed good physical and mechanical properties with having specific gravity over 2.65, absorption less than 1%, and abration ratio below 20%, but particle shape of CMW was long or flat, which caused a poor workability in mixing. Therefore, to make workability better, a 1/4 of CMW coarse aggregate was replaced with normal aggregate which had a good particle shape, and a superplasticizer was added to the mix. Compressive strength and other mechanical properties of CMW concrete was very good. In conclusion, characteristics of CMW concrete was acceptable for use as a concrete structural material.

  • PDF

Strength Characteristics of Light-weight Insulating Mortar Using Wasted Foam Polystyrene heat Insulating Materials as Recycling Aggregate (폐발포폴리스티렌 단열재를 순환골재로 사용한 경량 단열 모르타르의 강도특성)

  • Kang, Hye Ju;Jin, Eun mi;Kang, Suk Pyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.221-222
    • /
    • 2016
  • The replacement ratio of waste EPS was varied, and its effect on compressive strength and absorption capacity was investigated. According to the experimental results, The 28th day compressive strengths for the W/C 50% specimens were 17.5~21.2MPa, which was relatively low compared to the 13.6~22.2MPa of the W/C 70%.

  • PDF

Strength Properies of Concrete Using Waste Slag Aggregates as the Products of Steel Industry (산업폐기물인 제강 슬래그쇄석을 이용한 콘크리트의 강도특성)

  • Lee, Bong-Hak;Kim, Tae-Kyung
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.45-50
    • /
    • 1996
  • An experimental study os performed to examine the feasibility of using wastes steel furnace slag construction materials and its utility as a replacement for the natural resources to prevent the economic loss was investigated. A half factorial exprements was performed with the variables of W/C ratio, S/A, Coarse aggrigate/Slag ratio and slump as a preliminary study for optimum mix design of concrete. The results show that the W/C ratio and Slump ratio are the most important factor to the concrete strength. The substitute of waste Slag up to 100% has little influence, saying that it can substitute the coarse aggregate without damaging the concrete properties.

  • PDF

A Study on Characteristics of Early Age Pore-structure and Carbonation of Ground Granulated Blast Furnace Slag Concrete (고로슬래그미분말 콘크리트의 초기재령특성과 중성화에 관한 연구)

  • 변근주;박성준;하주형;송하원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.107-110
    • /
    • 1999
  • The objective of this study is to obtain characteristics of early age pore-structure and carbonation of concrete using ground granulated blast furnace slag (GGBFS). The durability of GGBFS concrete should be evaluated for wide use of the GGBFS. As for that evaluation, an analysis on early age pore-structure characteristics of GGBFS concrete are very important, Carbonation depths of GGBFS concrete, which are known to be larger than that of OPC, are different according to replacement ratios and fineness of slag. Because sea sand as fine aggregate is much used recently, it is also necessary to analyze characteristics of carbonation of GGBFS concrete. In this study, The micro-pore structure formation characteristics of GGBFS concrete are obtained through the test of GGBFS mortars with different fineness and replacement ratio of GGBFS. The carbonation of GGBFS concrete is also investigated by acclerated carbonation test for early age GGBFS concrete.

  • PDF

A Study on the physical Properties of concrete Using Waste Foundry Sand (폐주물사를 사용한 콘크리트의 물성에 관한 연구)

  • 최연왕;최재진;김기형;김용직
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.52-57
    • /
    • 1999
  • The aimed of this study is to analyze the qualities of foundry waste sand and the basic physic of the concrete mixed with the foundry waste sand, as a way of study for reusing the foundry waste sand disused in the foundry as the fine aggregate for concrete. According to the experimental results, the foundry waste sand is composed of silica ore whose main ingredient is SiO2 and doesn't produce harmful objects of hydration reaction, and the fluidity of concrete shows a decline with the increase of replacement ratio of foundry waste sand, and the compress strength, the tensile strength, the elastic modulus of concrete containing foundry waste sand are improved at the replacement rate of 25%.

  • PDF

A Physical Properties of Lightweight Foamed Concrete According to Lightweight Aggregate Types and Foaming agent Types (경량골재와 기포제 종류에 따른 경량기포 콘크리트의 물리적 특성)

  • Kim, Ha-Seog;Lee, Sea-Hyun;Sun, Jung-Soo;Kim, Jin-Man
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.435-444
    • /
    • 2016
  • In Korea, approximately 48% of all households live in apartments, which are a form of multi-unit dwellings, and this figure increases up to 58%, when row houses and multiplex houses are included. As such, majority of the population reside in multi-unit dwellings where they are exposed to the problem of floor impact noise that can cause disputes and conflicts. Accordingly, this study was conducted to manufacture a high-weight, high-stiffness foamed concrete in order to develop a technology to reduce the floor impact noise. For the purpose of deriving the optimum mixing ratio for the foamed concrete that best reduces the floor impact noise, the amounts of the foaming agent, lightweight aggregate and binder were varied accordingly. Also, the target characteristics of the concrete to be developed included density of over $0.7t/m^3$, compressive strength of over $2.0N/mm^2$ and thermal conductivity of under 0.19 W/mK. The results of the experiment showed that the fluidity was very excellent at over 190 mm, regardless of the type and input amount of foaming agent and lightweight aggregate. The density and compressive strength measurements showed that the target density and compressive strength were satisfied in the specimen with 50% foam mixing ratio for foamed concrete and in all of the mixtures for the lightweight aggregate foamed concrete. In addition, the thermal conductivity measurements showed that the target thermal conductivity was satisfied in all of the foamed concrete specimens, except for VS50, in the 25% replacement ratio case for Type A aggregate, and all of the mixtures for Type B aggregate.

Numerical analysis and eccentric bearing capacity of steel reinforced recycled concrete filled circular steel tube columns

  • Ma, Hui;Liu, Fangda;Wu, Yanan;Cui, Hang;Zhao, Yanli
    • Advances in concrete construction
    • /
    • v.13 no.2
    • /
    • pp.163-181
    • /
    • 2022
  • To study the mechanical properties of steel reinforced recycled concrete (SRRC) filled circular steel tube columns under eccentric compression loads, this study presents a finite element model which can simulate the eccentrically compressed columns using ABAQUS software. The analytical model was established by selecting the reasonable nonlinear analysis theory and the constitutive relationship of materials in the columns. The influences of design parameters on the eccentric compressive performance of columns were also considered in detail, such as the diameter-thickness ratio of circular steel tube, replacement percentage of recycled coarse aggregate (RCA), slenderness ratio, eccentricity, recycled aggregate concrete (RAC) strength and steel strength and so on. The deformation diagram, stress nephogram and load-displacement curves of the eccentrically compressed columns were obtained and compared with the test results of specimens. The results show that although there is a certain error between the calculation results and the test results, the error is small, which shows the rationality on the numerical model of eccentrically compressed columns. The failure of the columns is mainly due to the symmetrical bending of the columns towards the middle compression zone, which is a typical compression bending failure. The eccentric bearing capacity and deformation capacity of columns increase with the increase of the strength of steel tube and profile steel respectively. Compared with profile steel, the strength of steel tube has a greater influence on the eccentric compressive performance of columns. Improving the strength of RAC is beneficial to the eccentric bearing capacity of columns. In addition, the eccentric bearing capacity and deformation capacity of columns decrease with the increase of replacement percentage of RCA. The section form of profile steel has little influence on the eccentric compression performance of columns. On this basis, the calculation formulas on the nominal eccentric bearing capacity of columns were also put forward and the results calculated by the proposed formulas are in good agreement with the test values.

An Experimental Study for Recycling of the Waste PET Bottle as a Fine Aggregate for Lightweight Concrete (폐 PET 병을 경량콘크리트용 잔골재로 재활용하기 위한 실험적 연구)

  • Choi Yun-Wang;Moon Dae-Joong;Jung Moon-Young;Cho Sun-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.79-87
    • /
    • 2004
  • The qualify of lightweight aggregate made from waste PET bottle(WPLA) and the workability, the unit weight and strength property of concrete with WPLA were investigated for the purpose of recycling the waste PET bottles as lightweight concrete fine aggregate. This study indicated a good result that WPLA should be replaced with less than $50\%$ of natural fine aggregate. When WPLA was replaced with $50\%$ of natural fine aggregate, the specific gravity and water absorption of mixed fine aggregate were greatly reduced about 23 and $75\%$ respectively in comparison with those of river sand. The quality of WPLA affected on the properties of lightweight aggregate concrete. The workability of fresh concrete with WPLA(WPLAC) was improved with increasing the replacement ratio of WPLA and water cement ratio. Slump increasing ratio of the former showed about $45 {\~} 120\%$ because that a specific gravity of fine aggregate was decreased from 2.6 to 1.7. The unit weight of concrete with $75\%$ WPLA was decreased about $17\%$ in comparison with that of control concrete. Furthermore, the compressive strength of concrete with 25 and $50 \%$ WPLA at the age of 28 days increased higher than 30 MPa regardless with water cement ratio (W/C=45, 49 and $53\%$) of this study. Specific strength of concrete with $25\%$ WPLA, $15.11{\times}10^3 MPa{\cdot}m^3/kg$, was higher than that of contro concrete in water cement ratio of $49\%$. The compressive strength-splitting tensile strength ratio and compressive strength-modulus of elasticity ratio of WPLAC were similar to that of nomal lightweight aggregate concrete. This results showed a good estimation that WPLA will be able to recycled as a fine aggregate for lightweight concrete.