• Title/Summary/Keyword: Replacement Costs

Search Result 223, Processing Time 0.031 seconds

Estimation of Coefficient of Earth Pressure At Rest During SCP Installation by Drained Triaxial Compression Test (배수삼축압축시험을 통한 SCP 시공과정 중 정지토압계수 평가)

  • Kwon, Youngcheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.11
    • /
    • pp.93-101
    • /
    • 2012
  • SCP is a construction method that maximizes the effects of ground improvement by creating sand piles, which are formed by the compaction within soft ground. SCP is mainly used for consolidation and drain effects in clayey soils, and as a liquefaction countermeasure through effects such as compaction in loose sandy soils. In the design of SCP, if the sand piles with high stiffness are not taken into account, it can become a design that overly considered safety, and increased construction costs are highly likely to cause economic disadvantages. The changes in stress conditions and compaction mechanisms in the subsurface have been identified to a certain extent by study findings to date. However, the studies that considered SCP and in-situ ground as composite ground are fairly limited, and therefore, those studies have not achieved enough results to fully explain the relevant topics. In this study, the ground improved by SCP was regarded as the composite ground that consists of SCP and in-situ ground. Moreover, employing a CID test, this study examined the changes in the stress conditions of in-situ ground according to the installation of SCP through the relations between $K_0$ and SCP replacement ratio. At the same, whether the SCP installation procedure can be recreated in a laboratory was examined using a cyclic triaxial test. According to the test results, the changes in the stress conditions of the original ground occurred most largely in an initial stage of SCP installation, and after a certain time point, the vibration for SCP installation did not have a great influence on the changes in the stress conditions of the ground. Moreover, in order to recreate the behaviors of in-suit ground according to SCP in a laboratory, cyclic loading, which corresponds to casing vibration, was concluded to be essentially required.

Physical Properties of Shale Aggregate and Characteristics of Concrete in Replacement Ratio in Daegu-Kyeongbuk Region (대경권 셰일 골재의 물성 평가 및 치환율 변화에 따른 콘크리트의 특성)

  • Lee, Seung-Han;Jung, Yong-Wook;Yeo, In-Dong;Choi, Jong-Oh;Bae, Su-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5551-5557
    • /
    • 2012
  • Sedimentary rocks dug up in construction fields are mostly stockpiled for landfill disposal, leading to an increase in construction costs and construction inefficiency. After screening, some of the sandstone can be used as aggregate; however, most of the shale ends up as industrial waste in practice. In this study, to stabilize the demand and develop resources for alternative aggregates of concrete, the potential use of shale, which is widely distributed in the Daegu-Kyeongbuk region, as a concrete aggregate was evaluated. Red and black shale exported from a Daegu excavation site was selected for use in the experiments and evaluated by comparing with hornfels, which is widely used as a coarse aggregate and is a type of andesite and metamorphosed sedimentary rock. The physical properties of the aggregate were evaluated in accordance with the test methods of KS F 2527 "crushed concrete aggregate," and the compressive strength against the shale aggregate replacement ratio was measured. The compressive strength of the concrete after 28 days was 30.8 MPa when the black shale replaced 100% of the aggregate in the concrete and 31.1 MPa when the red shale replaced 100% of the aggregate in the concrete. Compared with the compressive strength of 37.5 MPa for concrete prepared by using plain aggregate, using shale as a substitute for the aggregate produced an average compressive strength that was 82% of normal concrete.

The Maintenance Process Model using BPMN Method in Public Rental Housing (BPMN 방식을 이용한 공공임대주택 유지관리 업무 프로세스 모델)

  • Park, Kyung-Mo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.743-751
    • /
    • 2016
  • It is critical to effectively change the measures of prevention from the breakdown maintenance proceeding an apartment housing maintenance task scope. It is necessary that systematization be performed for a series of tasks, such as facility inspection, diagnosis and replacement. In addition, it is preceded by establishing a standardization for maintenance work scope. Therefore, this study examined the problems related to public rental housing maintenance work scope to manage it more systematically. In addition, the study suggests a work process section for facility repairs, long term replacement and general maintenance using one on one interviews with experts to classify the occupants, management office and head office. This study's standard work system is expected to provide fairness and transparency in addition to improving the productivity in public rental housing maintenance via an efficiency promotion plan. In addition, it is used as the basic reference for developing a system of public rental housing maintenance costs and diagnosis actions. Finally, it is necessary to create improvements that provide a more objective work system standardization throughout the analysis of the productivity data according to the work flow and the review of the occupants, management office and head office in the future applications of the pilot site.

An Uncertainty Analysis of Calculating Life Cycle Maintenance and Energy Costs for Technical Proposals (기술제안입찰을 위한 유지관리 및 에너지 비용 산출방식의 불확실성 분석)

  • Chung, Sung Young;Kim, Sean Hay
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.5
    • /
    • pp.3-9
    • /
    • 2018
  • Although Life Cycle Cost (LCC) must be evaluated by experts, sometimes it may not allow a sufficient time for even the experienced LCC expert to make rational decisions. Therefore, it often ends with relatively comparing the final numbers. We have broken down 110 technical proposals that are actually bade and accepted for large construction projects, and then have analyzed the uncertainty of Maintenance and Energy (M&E) cost during building life cycle, which turns out be the most volatile factor in uncertainty of LCC. Also we suggest "Value Engineering Index (VEI)" - the reduced M&E cost that is normalized by the reduced first cost. It is analyzed that the most uncertain factors of the M&E cost include repair and replacement term differing from each project, duplicated repair and replacement, non-standard repair items, and site-specific energy cost. Eventually we propose a VEI population with a mean of 1.38 and a standard deviation of 1.19, which is obtained by individually and exclusively applying the uncertain factors of the M&E cost to the 35 standard sample of technical proposals. The LCC evaluators may be able to use the VEI population as the benchmark to select the technical proposal with the most reasonable LCC among many others in two suggested manners; the one is to deterministically calculate the probability of single VEIs, and the other is to stochastically calculate the probability of the VEIs where uncertainty is quantified.

Durability Evaluation of Cement Concrete Using Ferrosilicon Industrial Byproduct (페로실리콘 산업부산물 활용 시멘트 콘크리트의 내구성능 평가)

  • Chang-Young Kim;Ki Yong Ann
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.89-96
    • /
    • 2023
  • In this paper, a ferrosilicon by-product was evaluated to confirm the feasibility of recycling it as supplementary cementitious material of ordinary Portland cement in concrete. Three different levels of replacement ratio (10 %, 20 % and 30 % of total binder) were applied to find which is the most beneficial to be used as a binder. Ferrosilicon concrete was initially assessed at setting time and compressive strength. Durability was evaluated by the resistance to chloride penetration test(RCPT) and alkali-silica reaction(ASR) with a comparison to silica fume concrete due to their similarity in chemical composition. The porosimetry and X-ray diffraction analysis along with energy dispersive X-ray spectroscopy give information on the microstructural characteristics of the ferrosilicon concrete. It was found that 10 % ferrosilicon concrete has higher strength while 20 %, 30 % have lower strength than OPC concrete. However, chemical resistance to chloride attack is higher when replacement is increased. Compared to silica fume, the durability of ferrosilicon might be less efficient however, it is obviously beneficial than OPC. High SiO2 content in ferrosilicon results in producing more C-S-H gel which could make denser pore structure. Most of the risk of alkali silica reaction to silicate binders through length change tests was less than 0.2 %, and both mortar using ferrosilicon and silica fume showed better resistance to alkali silica reaction as the substitution rate increased.Reuse of industrial waste rather than producing highly refined additives might reduce environmental load during manufacture and save costs.

Thermophile mushroom cultivation in Cambodia: Spawn production and development of a new substrate, acacia tree sawdust

  • Chang, Hyun-You;Huh, Youn-ju;Soeun, Pisey;Lee, Seung-ho;Song, Iva;Sophatt, Reaksmey;Seo, Geum-Hui
    • Journal of Mushroom
    • /
    • v.14 no.1
    • /
    • pp.1-5
    • /
    • 2016
  • To minimize cultivation costs, prevent insect-pest infestation, and improve the production efficiency of thermophilic mushrooms, plant substrates obtained from local areas in Cambodia were used for production of both spawn and mushrooms. In this experiment, different sawdusts different organic wastes and grain ingredients and analyzed for improvement of spawn-production efficiency. Four thermophilic mushroom species, Pleurotus sajor-caju (oyster mushroom, Sambok), Ganoderma lucidum (deer horn shaped), Auricularia auricula (ear mushroom), and Lentinula edodes (shiitake), were used to identify efficient new substrates for spawn and mushroom production. Although the mycelia in the rubber tree sawdust medium showed a slightly slower growth rate (10.9 cm/15 days) than mycelia grown in grains (11.2 cm/15 days in rice seeds), rubber tree sawdust appeared to be an adequate replacement for grain spawn substrates. Th findings indicate that rubber tree sawdust, sugarcane bagasse, and acacia tree sawdust supplemented with rice bran and calcium carbonate could be new alternative the substrates for. Although sugarcane bagasse and rubber tree sawdust showed similarly high biological efficiencies (BE) of 60% and 60.8%, respectively, acacia tree sawdust exhibited relatively a low biological efficiency of 22.4%. However, it is expected that acacia sawdust has potential for the mushroom cultivation when supplemented with currently used sawdust substrates in Cambodia, because of its relatively low price. The price of the sawdust (20 kg sawdust= 6500 Riel or 1.6 USD) currently used was 6.5 times higher than the price of acacia sawdust (201000 Riel or 0.25 USD). Therefore, utilization for acacia sawdust for mushroom cultivation could become feasible as it would reduce by producing costs of mushrooms in rural areas of Cambodia.

Thermoeconomic Analysis of Hybrid Desiccant Cooling System Driven by District Heating (지역난방에 연계된 하이브리드 제습냉방시스템의 경제성 분석)

  • Ahn, Joon;Kim, Jaeyool;Kang, Byung Ha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.9
    • /
    • pp.721-729
    • /
    • 2014
  • A hybrid desiccant cooling system (HDCS) that uses a heat pump driven by district heating instead of a sensible rotor can provide an increased energy efficiency in summer. In this paper, the summer operation costs and initial costs of both the HDCS and traditional systems are analyzed using annual equal payments, and national benefits are found from using the HDCS instead of traditional systems. In the analysis results, the HDCS reduces the operation cost by 30 compared to the traditional systems, and each HDCS unit has 0.079 TOE per year of primary energy savings and 0.835 $TCO_2$ per year of $CO_2$ emission reduction more than the traditional systems. If HDCSs were to be installed in 680,000 households by 2020, this would produce a replacement power effect of 463 MW. Despite this savings effect, HDCSs require a government subsidy before they can be supplied because the initial cost is higher than that of traditional systems. Thus, this paper calculates suitable subsidies and suggests a supply method for HDCSs considering the national benefits.

On the Study of Design Guidelines and a Design Case to Enable the Replacement of LRT Stations by Stops (경전철 역사를 대체하는 정류장 도입을 위해 필요한 설계지침의 도출 및 적용 사례에 관한 연구)

  • Kim, Joo-Uk;Park, Kee-Jun;Lee, Ji-Eon;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3499-3510
    • /
    • 2015
  • To cope with the increased demand on the intra-city transportation by urban rails, the introduction of the light rail transit (LRT) systems has been expedited in Korea due to the possible reduction of both the development and operation costs from adopting LRT systems. The LRT systems have so far been designed, constructed and operated based on the corresponding law and regulations. It has been conceived that fully complying with the existing guidelines may incur some extra costs on LRT. In addition, the present design of LRT stations seems to require unnecessarily long flow of passengers traffic, particularly for disabled people. In this paper, as an approach to solving the aforementioned issues, an introduction of 'LRT stops' has been studied where the stops are similar in concept to bus stops and are intended to replace the stations of a bigger scale in general. Specifically, necessary guidelines for design have been developed by modifying the existing ones to be fit with LRT stops. A design case was also presented to evaluate them. The effective use of the results reported here will provide an opportunity of cost reduction in connection with the construction and operation, and also let people benefit from convenient use of rails, thereby resulting in enhanced transportation welfare.

Cost-Benefit Analysis Method for Ageing Equipment of Chemical Plants Using Risk Assessment (위험성평가를 이용한 노후설비에 대한 비용 편익분석 방법)

  • Jung, Soomin;Jung, Changmo;Kang, Seok-Min;Chae, Seungbeen;Kang, Seung-Gyun;Ko, Jae Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.4
    • /
    • pp.84-92
    • /
    • 2020
  • Most facilities in chemical plants operate in environments that are outside the range of temperature and pressure that can be encountered on a daily basis, and are vulnerable to aging due to these stresses and environmental conditions. The facilities exposed to these conditions are not only likely to fail due to cumulative damage, but also lead to accidents if maintenance and replacement are not performed.Recommendation guidelines called risk-based inspection are widely used around the world-wide. However, limits exist for facilities that have already elapsed for a certain. As a result of the survey on the aging of Ulsan industrial complex in Korea, which carries out proper inspection, many of the facilities have been used for 20 years. Also, most of the facilities where the accident occurred have been in operation for more than 20 years. Therefore, this study suggested criteria for classifying devices that have exceeded a certain period of use as obsolete facilities. In addition, quantitative risk assessment was conducted. The safety investment method using the cost-benefit analysis method was proposed in order to calculate the loss cost and reduce the risk by expressing the risks of the corresponding aged facility as an Economic index. By utilizing the method of cost-benefit analysis of old facilities using the quantitative risk assessment presented in this study, it can be expected to improve the performance and life of old facilities, improve production efficiency and reliability of the system of facilities, change the recognition of safety management costs, increase employee stability, and reduce loss costs.

Analysis of Salinity Impacts on Agricultural and Urban Water Users

  • Michelsen, Ari;Sheng, Zhuping;McGuckin, Thomas;Creel, Bobby;Lacewell, Ron
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.13-13
    • /
    • 2011
  • The Rio Grande Compact Commission, in collaboration with local water management entities, water users and universities established a three state Rio Grande The Rio Grande Compact Commission, in collaboration with local water management entities, water users and universities established a three state Rio Grande Salinity Management Program. The objectives of the Rio Grande Project Salinity Management Program are to reduce salinity concentrations, loading, and salinity impacts in the Rio Grande basin for the 270 mile river reach from San Acacia, New Mexico to Fort Quitman, Texasto increase usable water supplies for agricultural, urban, and environmental purposes. The focus of this first phase of the program is the development of baseline salinity and hydrologic information and a preliminary assessment of the economic impacts of salinity. An assessment of the economic impacts of salinity in this region was conducted by scientists at Texas A&M University's AgriLife Research Center at El Paso and New Mexico State University. Economic damages attributable to high salinity of Rio Grandewater were estimated for residential, agricultural, municipal, and industrial uses. The major impact issues addressed were: who is being affected the types of economic impacts the magnitude of economic damages overall and by user category and identification of threshold-effect levels for different types of water use. Salinity concentrations in this 270 mile reach of the river typically range from 480 ppm to 1,200 ppm, but can exceed 3,000 ppm in the lower section of this reach. Economic impacts include reductions in agricultural yields, reduced water appliance life, equipment replacement costs, and increased water supply costs. This preliminary economic assessment indicates annual damages of $10.5 million from increased water salinity. Under current water uses, municipal and industrial uses account for 75% of the total estimated impacts. However, agricultural impacts are based on current crop pattern yield reductions and, salinity leaching requirements and do not account for the impacts of reduced revenue from having to grow salinity tolerant, lower value crops. Actual damages are anticipated to be significantly higher with the inclusion of these additional agricultural impacts plus the future impacts from the growing population in the region. A more comprehensive economic analysis is planned for the second phase of this program. Results of the economic analysis are being used to determine the feasiblity of salinity control alternatives and what salinity reduction control measures will be pursued.

  • PDF