• Title/Summary/Keyword: Repetitive plate loading test

Search Result 5, Processing Time 0.015 seconds

Evaluation of Correlation between Subgrade Reaction Modulus and Strain Modulus Using Plate Loading Test (평판재하시험을 이용한 지반반력계수와 변형률계수의 상관관계 평가)

  • Kim, Dae-Sang;Park, Seong-Yong;Kim, Soo-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.6
    • /
    • pp.57-67
    • /
    • 2008
  • Two test methods, nonrepetitive plate loading test (NPLT) and repetitive plate loading test (RPLT) are being used to control the quality of compaction through the evaluation of the stiffness of subgrade soils in the Korea railway industry. Subgrade reaction modulus ($k_{30}$) from the NPLT and strain modulus ($E_v$) from the RPLT are the index values to check them. The methods have similar aspects, but they differ in the modulus evaluation method, the numbers of loading stage, termination procedures, etc. This paper analyses the differences of the two test methods and evaluates the relationship between subgrade reaction modulus and strain modulus. In order to develop the relationship, total 22 tests were performed including the NPLT and the RPLT at the 6 original grounds, and 5 upper or lower subgrades in Kyungbu High Speed Railway II stage construction sites. According to the soil conditions, the relationship between subgrade reaction modulus and strain modulus was proposed with corrections by considering strain states, mean confining pressures, and Poisson's ratio.

An Experimental Study on the Spring Stiffness Test Method of under Sleeper Pad for Ballasted Track (자갈궤도용 침목방진패드의 수직 스프링강성 시험기법에 관한 실험적 연구)

  • Choi, Jung-Youl;Shin, Tae-Hyoung
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.82-88
    • /
    • 2016
  • Ballasted gravel will be damaged or worn by the repetitive train load. And these damages of ballast gravel could be increased by increasing vehicle speed. Therefore, various techniques for reducing the ballast pressure have been proposed, such as the attached pad type of sleeper bottom for ballasted track. In this study, spring stiffness test method were proposed to evaluate the performance of under sleeper pad for ballasted track. Standard ballast plate(SBP) was developed to simulate the ballast gravel and compared with the foreign test results. Experimental results showed a trend similar to the previous studies according to various loading plate type. specimen type(Type A, Type B) differences in spring stiffness according to hardness were not significant. Also, the FSP (Flat steel plate) - shaped jig is about 80% of the spring stiffness was greater than SBP. Therefore, to evaluate the actual spring stiffness of under sleeper pad for ballasted track, it was important to adopted the appropriate spring stiffness test method using the SBP to simulate actual field conditions.

Bearing Capacity Analysis on Cyclic Loading of Soft Ground by Surface Reinforcement (표층처리지반에서의 반복하중재하시험을 통한 지지력 분석)

  • Kwak, Nokyung;Park, Minchul;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.6
    • /
    • pp.5-17
    • /
    • 2012
  • The study of surface ground reinforcing method is supposed to be considered preferentially is not satisfied and also doesn't contemplate plastic flow because of repetitive drive of construction equipment. Also, Terzaghi's bearing-capacity equation and Yamanouchi's suggestion have been used to design the surface reinforcement, but most engineers depend on their experience and cases constructed before because of dispersed variables and inappropriate bearing-capacity factors. Hence, plate load test and repetitive plate load test were performed in the field which is reinforced with geotextile, Geogrid whose tensile strength are 200kN/m, 100kN/m and bamboo($0.4m{\times}0.4m$). The object of this study is to evaluate bearing capacity and behaviour of surface ground and to compare each reinforcement form test results. From the results bearing capacity ratio increased by a maximum of 1.5 times with bamboo reinforcement method comparing to others.

Effects of reinforcement on two-dimensional soil arching development under localized surface loading

  • Geye Li;Chao Xu;Panpan Shen;Jie Han;Xingya Zhang
    • Geomechanics and Engineering
    • /
    • v.37 no.4
    • /
    • pp.341-358
    • /
    • 2024
  • This paper reports several plane-strain trapdoor tests conducted to investigate the effects of reinforcement on soil arching development under localized surface loading with a loading plate width three times the trapdoor width. An analogical soil composed of aluminum rods with three different diameters was used as the backfill and Kraft paper with two different stiffness values was used as the reinforcement material. Four reinforcement arrangements were investigated: (1) no reinforcement, (2) one low stiffness reinforcement R1, (3) one high stiffness reinforcement R2, and (4) two low stiffness reinforcements R1 with a backfill layer in between. The stiffness of R2 was approximately twice that of R1; therefore, two R1 had approximately the same total stiffness as one R2. Test results indicate that the use of reinforcement minimized soil arching degradation under localized surface loading. Soil arching with reinforcement degraded more at unloading stages as compared to that at loading stages. The use of stiffer reinforcement had the advantages of more effectively minimizing soil arching degradation. As compared to one high stiffness reinforcement layer, two low stiffness reinforcement layers with a backfill layer of certain thickness in between promoted soil arching under localized surface loading. Due to different states of soil arching development with and without reinforcement, an analytical multi-stage soil arching model available in the literature was selected in this study to calculate the average vertical pressures acting on the trapdoor or on the deflected reinforcement section under both the backfill self-weight and localized surface loading.

An Experimental Study on the Fatigue Behaviors Strengthened by Ventilation-Glass Fiber Plate of Reinforced Concrete Beams (철근콘크리트 보의 통기성 유리섬유판 보강에 따른 피로거동에 관한 실험적 연구)

  • Kim, Woonhak;Kang, Seokwon;Shin, Chunsik
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.4
    • /
    • pp.391-400
    • /
    • 2012
  • Recently, the construction industry commonly uses FRP as a reinforcement material because of its material advantages. FRP attached reinforcement has various advantages such as high strength, stiffness, excellent durability and construction practicability comparing to its weight. However, external attachment of FRP is water-tighted with low water permeable material, not draining water, probably causing damages on a permanent structure. The study manufactured it through pultrusion and examined GP(glass fiber panel) of which material-mechanical properties are almost same as the existing FRP but durability and attachment performance are better by stationary experiments, testing load-deflection curve, destruction types and load-deflection relation under repetitive loading test. As a result of 2,000,000 fatigue tests, it did not result in the destruction and showed excellent permanent attachment and durability as it displays significantly low compressive strain of concrete.