• Title/Summary/Keyword: Repetitive Control(반복제어)

Search Result 79, Processing Time 0.024 seconds

A Study on Repetitive Tracking Control of a Coarse-Fine Actuator (조미동 구동기의 반복추종제어에 관한 연구)

  • Choi, Gi-Sang;Oh, Jong-Hyun;Choi, Gi-Heung
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.4
    • /
    • pp.38-46
    • /
    • 1999
  • This paper discusses the repetitive tracking control method for a coarse-fine actuator. The proposed system is composed of a magnetic linear drive as a coarse actuator and a piezoelectric linear positioner as a fine actuator. In particular, nonlinear friction in a magnetic linear drive and hysteresis characteristic of a piezoelectric linear positioner are modeled first. The feedback linearization loop uses these models in tracking position control. The control strategy is then further extended to include a repetitive control algorithm in tracking periodic reference inputs. This repetitive controller is implemented on the existing PID controller augmented with feedback linearization loop. The experimental results show that performance in tracking sinusoidal waveforms is noticeably improved by augmenting a PID controller with feedback linearization loop and a repetitive controller together.

  • PDF

Discrete-Time Adaptive Repetitive Control and Its Application to Linear Motors (적응 이산시간 반복제어 및 리니어모터에의 응용)

  • Ahn, Hyun-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.79-82
    • /
    • 2002
  • In this paper, we propose an adaptive repetitive control algorithm for the system the task of which is repetitive. The feedforward controller in the repetitive control system is modified by using the system parameter identifier in order to improve the convergence characteristics. The proposed algorithm is applied to the tracking control of a linear BLDC motor to which a periodic reference input is applied. It is illustrated by simulation results that the proposed adaptive repetitive control method yields better control performance than existing repetitive control even when modeling errors exist.

  • PDF

On Stability for Design of Repetitive Controllers in Frequency Domain (주파수 영역에서 연속반복학습제어기 설계 안정성 해석)

  • Lee, Soo-Cheol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.4
    • /
    • pp.126-130
    • /
    • 2007
  • This paper presents a method to design a repetitive controller that is specified in the specified trajectory for the repetitive works. With the single-model design approach, the controller is derived by minimizing a frequency-domain based cost function that produces monotonic convergence of the tracking error as a function of repetition number. Numerical illustrations show how the proposed single-model design method produces a repetitive controller in a single nominal model of the system.

  • PDF

Repetitive control design for an ODD focusing servo system (반복 제어기를 이용한 광디스크 포커스 제어)

  • Lee, Jong-Min;Park, Jin-Young;Park, Tae-Wook;Yang, Hyun-Seok;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.1101-1106
    • /
    • 2003
  • As the disk in the ODD rotates, disturbances acting on the ODD servo system generally have periodic components. Such disturbances can make the system unstable and make the controller hard to work. The repetitive controller can be the solution of the periodic disturbances by making the periodic control signals. In this paper repetitive controller is proposed that make the control signal follow the periodic disturbances. A low pass filter, which can make the system stable, is proposed by the simple stability conditions. We will show the performance of the repetitive controller in actual commercial system. Simulation and experimental results will be given as the evidences

  • PDF

A Learning Controller for Repetitive Gate Control of Biped Walking Robot (이족 보행 로봇의 반복 걸음새 제어를 위한 학습 제어기)

  • 임동철;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.538-538
    • /
    • 2000
  • This paper presents a learning controller for repetitive gate control of biped robot. The learning control scheme consists of a feedforward learning rule and linear feedback control input for stabilization of learning system. The feasibility of teaming control to biped robotic motion is shown via dynamic simulation with 12 dof biped robot.

  • PDF

The Improvement of Output Voltage of UPS Using a Parallel Control Method (병렬 제어기법을 이용한 UPS 출력 전압의 개선)

  • 成 炳 模;姜 弼 淳;朴 晟 濬;金 喆 禹
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.158-164
    • /
    • 2002
  • This paper presents a proper parallel control method using a conventional control and a repetitive control for improving the output voltage waveform of uninterruptable power supply. Although first-order prediction control method shows a good characteristics to rectifier load, it is not sufficient to reduce steady state errors generated in nonlinear loads such as rectifier loads and phase controled loads. So we also employed a repetitive control method. A repetitive control method can eliminate steady state errors in the distorted output voltage caused by cyclic loads. The presented control scheme is verified through simulation and experiment. Experimental results Implemented on a single phase PWM inverter equipped with a LC output filter with 3 kVA, 60 Hz are shown.

A Study on the Cutter Runout In-Process Compensation Using Repetitive Loaming Control (반복학습제어를 이용한 커터 런아웃 보상에 관한 연구)

  • Hwang, Joon;Chung, Eui-Sik;Hwang, Duk-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.3
    • /
    • pp.137-143
    • /
    • 2002
  • This paper presents the In-process compensation to control cutter runout and improve the machined surface quality. Cutter runout compensation system consists of the micro-positioning servo system with piezoelectric actuator which is embeded in the sliding table to manipulate radial depth of cut in real-time. Cutting force feedback control was proposed in the angle domain based upon repetitive learning control strategy to eliminate chip load variation in end milling process. Micro-positioning control due to adaptive actuation force response improves the machined surface quality by compensation runout effect induced cutting force variation. This result will provide lots of information to build-up the preciswion machining technology.

Multiple-Model Probabilistic Design of Repetitive Controllers (연속반복학습제어의 복수모형 확률설계기법)

  • Lee, Soo-Cheol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.13 no.2
    • /
    • pp.1-7
    • /
    • 2008
  • This paper presents a method to design a repetitive controller that is robust to variations in the system parameters. The uncertain parameters are specified probabilistically by their probability distribution functions. Instead of working with the distribution functions directly, the repetitive controller is designed from a set of models that are generated from the specified probability functions. With this multiple-model design approach, any number of uncertain parameters that follow any type of distribution functions can be treated. furthermore, the controller is derived by minimizing a frequency-domain based cost function that produces monotonic convergence of the tracking error as a function of repetition number. Numerical illustrations show how the proposed multiple-model design method produces a repetitive controller that is significantly more robust than an optimal repetitive controller designed from a single nominal model of the system.

  • PDF

A Study on the Controller Design of Unmanned Surface Vessel through Repetitive Learning Method (반복 학습을 통한 무인 선박의 제어기 설계에 관한 연구)

  • Kim, Mincheul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.850-856
    • /
    • 2018
  • In this paper, a controller based on repetitive learning control is designed to control an unmanned surface vessel with nonlinear characteristics and unknown parameters. First, we define the equations of motion and error system of the unmanned vessel, and then design an repetitive learning controller composed of system error and estimated unknown parameters based on repetitive learning control and adaptive control. The stability of the unmanned vessel model controlled by the designed controller is verified through the analysis of the Lyapunov stability. Simulation shows that the error converges asymptotically to zero with semi-global result, confirming that the unmanned vessel is moving toward a given ideal path, and verifies that the controller is also feasible.

Design of a synchronization controller for non-rail mobile rack using repetitive control method (반복제어기법을 이용한 무궤도 이동랙 동기화제어기 설계)

  • Kim, Hwan-Seong;Park, Jin;Ha, Yun-Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.527-534
    • /
    • 2016
  • The non-rail mobile rack, which is used for cargo storage, can improve the storage capacities of logistics centers. Furthermore, it has the advantage that it can be used in traditional logistics centers without making any changes or renovation, such as installing rails. However, when the rack is operated by separated drive actuators mounted on the left and the right wheels, precise position control of the wheels is necessary even if the unbalanced cargo weight on the rack would affect the control. Therefore, internal synchronization control for position tracking between the left and right wheels on the non-rail mobile rack is necessary in this study. In addition, external synchronization control for realizing the same straight movements between mobile racks is necessary. For the internal and the external synchronization control, we propose a synchronization control algorithm based on the repetitive control theory. An internal synchronization control algorithm with repetitive control theory requires the application of the robust servo control method owing to parameter variations. In this case, we can set up the gains for the robust servo control system by considering the cargo variations on the mobile rack. Furthermore, for developing the external synchronization control algorithm, we use a double repetitive control system to perform synchronization control between mobile racks. The efficiency of the proposed control algorithm will be verified by simulation and experimental results. The proposed algorithm can be easily applied in the industry.